K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2018

Ta có \(a^2+b^2\ne0\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a\ne0\\b\ne0\end{matrix}\right.\)

\(\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2}\le\dfrac{3}{5}\)
<=> \(\dfrac{2t}{t^2+4}+\dfrac{1}{3t^2+2}\le\dfrac{3}{5}\), trong đó \(t=\dfrac{a}{b}\),
<=> 9t⁴ - 30t³ + 37t² - 20t + 4 ≥ 0
<=> (t - 1)²(3t - 2)² ≥ 0 (luôn đúng)

Vậy \(\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2}\le\dfrac{3}{5}\)

13 tháng 4 2017

Ta có: \(\frac{2a^2+3b^2}{2a^3+3b^3}\left(a+b\right)=1+ab\frac{2a+3b}{2a^3+3b^3}\)

Áp dụng BĐT Holder ta có: 

\(\left(2a^3+3b^3\right)\left(2+3\right)^2\ge\left(2a+3b\right)^3\)

Vậy ta có thể viết lại BĐT cần chứng minh như sau;

\(VT\left(a+b\right)\le2+25ab\left(\frac{1}{\left(2a+3b\right)^2}+\frac{1}{\left(2b+3a\right)^2}\right)\)

Nó đủ để ta có thể thấy rằng 

\(25ab\left[\left(2b+3a\right)^2+\left(2a+3b\right)^2\right]\le2\left(2a+3b\right)^2\left(2b+3a\right)^2\)

\(\Leftrightarrow59\left(a^2-b^2\right)^2+13\left(a^4+b^4-a^3b-ab^3\right)\ge0\)

BĐT cuối cùng đúng nên ta có ĐPCM

3 tháng 5 2020

ok jjj

4 tháng 9 2021
Chúc ngủ ngonDạo này có gì mới không?Chúc mừng sinh nhật
NV
10 tháng 5 2020

\(\Leftrightarrow\frac{\left(2a^2+3b^2\right)\left(a+b\right)}{2a^3+3b^3}+\frac{\left(2b^2+3a^2\right)\left(a+b\right)}{2b^3+3a^3}\le4\)

\(\Leftrightarrow\frac{2a^3+3b^3+2a^2b+3ab^2}{2a^3+3b^3}+\frac{2b^3+3a^3+2ab^2+3ab^2}{2b^3+3a^3}\le4\)

\(\Leftrightarrow\frac{2a^2b+3ab^2}{2a^3+3b^3}+\frac{2ab^2+3ab^2}{2b^3+3a^3}\le2\)

\(\Leftrightarrow\frac{2\left(\frac{a}{b}\right)^2+3\left(\frac{a}{b}\right)}{2\left(\frac{a}{b}\right)^3+3}+\frac{2\left(\frac{a}{b}\right)+3\left(\frac{a}{b}\right)^2}{3\left(\frac{a}{b}\right)^3+2}\le2\)

Đặt \(\frac{a}{b}=x>0\Rightarrow\frac{2x^2+3x}{2x^3+3}+\frac{3x^2+2x}{3x^3+2}\le2\)

\(\Leftrightarrow\left(x-1\right)^2\left(12x^4+12x^3-x^2+12x+12\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(x=1\) hay \(a=b\)

Hơi trâu bò :D

10 tháng 9 2020

\(\frac{a-b}{4b^2}\cdot\sqrt{\frac{4a^2b^4}{a^2-2ab+b^2}}\)

\(=\frac{a-b}{4b^2}\cdot\sqrt{\frac{\left(2ab^2\right)^2}{\left(a-b\right)^2}}\)

\(=\frac{a-b}{4b^2}\cdot\frac{2ab}{a-b}\)

\(=\frac{a}{2b}\)

29 tháng 1 2020

Ta sẽ chứng minh: \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với x,y > 0.

Thật vậy: \(x+y+z\ge3\sqrt[3]{xyz}\)(bđt Cô -si)

và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\)(bđt Cô -si)

\(\Rightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)(Dấu "="\(\Leftrightarrow x=y=z\))

Ta có: \(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

(Dấu "=" xảy ra khi a = b)

Tương tự ta có:\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\)(Dấu "=" xảy ra khi b=c)

\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)(Dấu "=" xảy ra khi c=a)

\(VT=\text{Σ}_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

(Dấu "=" xảy ra khi \(a=b=c=\frac{3}{2}\))

30 tháng 1 2020

Ô, thanh you, bạn 2k7 sao mà giỏi thế

10 tháng 12 2018

\(A=\dfrac{2}{\dfrac{a}{b}+\dfrac{4b}{a}}+\dfrac{1}{3\left(\dfrac{a}{b}\right)^2+2}\le\dfrac{3}{5}\)

Đặt \(\dfrac{a}{b}=y\)

\(A=\dfrac{2}{y+\dfrac{4}{y}}+\dfrac{1}{3y^2+2}\le\dfrac{3}{5}\)

\(A\Leftrightarrow\left(3y^2-5y+2\right)^2\ge0\)

10 tháng 12 2018

Mashiro Shiina

7 tháng 3 2020

Ta sẽ chứng minh :

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) với x, y > 0

Thật vậy : \(x+y+z\ge3\sqrt[3]{xyz}\)( bđt Cô - si )

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{abc}}\) ( bđt Cô - si )

\(\Rightarrow x+y+z\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\) ( Dấu " = " \(\Leftrightarrow x=y=z\) )

Ta có :

\(5a^2+2ab+2b^2=\left(2a+b\right)^2+\left(a-b\right)^2\ge\left(2a+b\right)^2\)

\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

( Dấu " = " xay ra khi a=b)

Tương tự ta cũng có :

\(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c}\le\frac{1}{9}\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{c}\right)\) ( Dấu " = " xảy ra khi b=c)

\(\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\le\frac{1}{9}\left(\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\) ( Dấu " = " xay ra khi c = a )

\(VT=\sum_{cyc}\frac{1}{\sqrt{5a^2+2ab+b^2}}\le\frac{1}{9}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)\)

\(\le\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu " = " xay ra khi \(a=b=c=\frac{2}{3}\)

Chúc bạn học tốt !!

NV
7 tháng 3 2020

\(\frac{1}{\sqrt{4a^2+2ab+b^2+a^2+b^2}}\le\frac{1}{\sqrt{4a^2+2ab+b^2+2ab}}=\frac{1}{\sqrt{\left(2a+b\right)^2}}=\frac{1}{2a+b}=\frac{1}{a+a+b}\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}\right)\)

\(\Rightarrow VT\le\frac{1}{9}\left(\frac{2}{a}+\frac{1}{b}+\frac{2}{b}+\frac{1}{c}+\frac{2}{c}+\frac{1}{a}\right)=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{2}{3}\)