K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(a^2+b^2\right)\left(c^2+d^2\right)=5.5\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2=25\)

\(\Leftrightarrow\left(a^2c^2+2abcd+b^2d^2\right)+\left(a^2d^2-2abcd+b^2c^2\right)=25\)

\(\Leftrightarrow\left(ac+bd\right)^2+\left(ad-bc\right)^2=25\)

mà ac + bd = 3

\(\Leftrightarrow\left(ad-bc\right)^2=25-3^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}ad-bc=4\\ad-bc=-4\end{cases}}\)

NV
13 tháng 11 2021

BĐT cần c/m tương đương:

\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)

\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)

\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)

Dễ dàng chứng minh điều này bằng AM-GM:

\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)

\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)

\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)

Lại có:

\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)

\(\Rightarrow a+b+c+d\le4\) (2)

(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)

20 tháng 10 2023

1:

BC=BH+CH

=3,6+6,4

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{3.6\cdot6.4}=4.8\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{3.6\cdot10}=6\left(cm\right)\\AC=\sqrt{6.4\cdot10}=8\left(cm\right)\end{matrix}\right.\)

Xét ΔABC vuông tại A có 

\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)

=>\(\widehat{C}\simeq37^0\)

ΔABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{B}\simeq90^0-37^0=53^0\)

2:

ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(1\right)\)

ΔABM vuông tại A có AD là đường cao

nên \(BD\cdot BM=BA^2\left(2\right)\)

Từ (1),(2) suy ra \(BH\cdot BC=BD\cdot BM\)

\(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2c^2+a^2d^2+b^2d^2+b^2c^2\)

\(=\left(c^2+d^2\right)\cdot\left(a^2+b^2\right)\)

18 tháng 2 2022

\((ac + bd)^2 + (ad – bc)^2 = (ac)^2 +(bd)^2 + 2(ac)(bd) + (ad)^2 +(bc)^2 - 2(ad)(bc) \)

                                    \( = (ac)^2 +(bd)^2 + (ad)^2 +(bc)^2 + 2abcd – 2abcd\)

                                    \(= a^2c^2 + b^2d^2 + a^2d^2 + b^2c^2\)

                                    \( = (a^2 + b^2)(c^2 + d^2)\)

➤ \((ac + bd)^2 + (ad – bc)^2 = (a^2 + b^2)(c^2 + d^2)\)

24 tháng 6 2017

Rất vui vì đề không sai^^ 
Tối tui làm :v 

9 tháng 6 2019

giúp vs ạ

22 tháng 11 2019

P≥ \(\sqrt{3}\) nha

23 tháng 11 2019

Ta có (ad−bc)2+(ac+bd)2=a2d2+b2c2−2abcd+a2c2+b2d2+2abcd=(a2+b2)(c2+d2)
Từ gia thiết ta có
1+(ac+bd)2=(a2+b2)(c2+d2)
Áp dụng BĐT AM-GM ta có
(a2+b2)+(c2+d2)≥2√(a2+b2)(c2+d2)
Do đó S≥ac+bd+2√(a2+b2)(c2+d2)
=> S≥(ac+bd)+2√1+(ac+bd)2
Dễ thấy rằng S>0
Đặt x = ac+bd
=>S≥x+2√1+x2
S2≥x2+4(1+x2)+4x.√1+x2=(√1+x2+2x)2+3≥3
Do đó S≥√3 (đpcm)

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

16 tháng 9 2018

Bnaj làm nhầm đề ak?