K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2018
Giải giúp mk vs nha ai biết giải thích nhanh mk vs cảm ơn nha
29 tháng 4 2018

Để A>-1 <=> \(\frac{2}{a}\) -1>-1   (đk a\(\ne\) 0)

            <=> \(\frac{2}{a}\) >0

  Vì 2>0=> a>0             

a: \(Q=\left(\dfrac{a-1}{2\sqrt{a}}\right)^2\cdot\dfrac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{a-1}\)

\(=\dfrac{\left(a-1\right)^2}{4a}\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{a-1}\)

=\(\dfrac{\left(a-1\right)^2\cdot\left(-4\sqrt{a}\right)}{\left(a-1\right)\cdot4a}=\dfrac{-\left(a-1\right)}{\sqrt{a}}\)

b: Q<0

=>-(a-1)<0

=>a-1>0

=>a>1

c: Q=2 

=>\(a-1=-2\sqrt{a}\)

=>\(a+2\sqrt{a}-1=0\)

=>\(\left[{}\begin{matrix}\sqrt{a}=-1+\sqrt{2}\left(nhận\right)\\\sqrt{a}=-1-\sqrt{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow a=3-2\sqrt{2}\)

25 tháng 12 2020

Mọi người ơi giải giúp mình với😥😥

25 tháng 12 2020

Cho Mình xin lời giải với ạ

5 tháng 10 2018

\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(A=\frac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\frac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(A=\sqrt{a}\left(\sqrt{a}+1\right)-\left(2\sqrt{a}+1\right)+1\)

\(A=a+\sqrt{a}-2\sqrt{a}-1+1\)

\(A=a-\sqrt{a}\)

a: Thay x=1 và y=-2 vào (P), ta được:

a*1^2=-2

=>a=-2

=>y=-2x^2

b: PTHĐGĐ là:

ax^2-4x-1=0

Δ=(-4)^2-4*a*(-1)=4a+16

Để (P) và (d) có ít nhất 1 điểm chung thì 4a+16>=0

=>a>=-4

a: \(A=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-\sqrt{x}-1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2}{x-1}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\dfrac{\sqrt{x}+1-2}{x-1}\)

\(=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-1\right)}\cdot\dfrac{x-1}{\sqrt{x}-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

b: Để A là số nguyên thì \(\sqrt{x}-1⋮\sqrt{x}+1\)

=>\(\sqrt{x}+1-2⋮\sqrt{x}+1\)

=>căn x+1 thuộc {1;2}

=>căn x thuộc {0;1}

mà x<>1

nên x=0

1 tháng 9 2016

a)A=\(\left(\frac{\sqrt{a}^2-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1\right)^2-\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

=\(\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{\left(\sqrt{a}-1+\sqrt{a}+1\right)\left(\sqrt{a}-1-\sqrt{a}-1\right)}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)

=\(\left(\frac{a-1}{2\sqrt{a}}\right)^2\left(\frac{-4\sqrt{a}}{a-1}\right)\)

=\(\frac{a-1}{\sqrt{a}}\cdot\left(-1\right)\)

=\(\frac{1-a}{\sqrt{a}}\)

1 tháng 9 2016

b) để A<0 thì (ĐKXĐ a#0 a#1

\(\frac{1-a}{\sqrt{a}}< 0\)

mà \(\sqrt{a}>0\)

=> 1-\(\sqrt{a}< 0\)

=> \(\sqrt{a}>1\)

=> a>1