Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 15 = 1 + 2 + 3 + 4 + 5
Vì a1 là số nguyên dương nên \(a_1+a_2\ge3\)điều trên xảy ra khi \(a_1=1\)và \(a_2=a_1+1\)
Tương tự với \(a_1+a_2+a_3+a_4+a_5=a_1+\left(a_1+1\right)+...+\left(a_1+a_4\right)\)
\(=5a_1+10⋮15\)
Theo nguyên lý Dirichlet thì trong 2015 số nguyên dương sẽ tồn tại ít nhất 134 số chia hết cho 15 nếu \(a_1=15\)
Nếu các số nguyên dương trên có giá trị tương đương nhau thì \(a_1+a_2+...+a_{2015}=2015a_n\)
Vậy trong nguyên lý Dirichlet thì có thể tồn tại ít nhất 134 cặp số có tổng chia hết cho 15 với \(a_n\)nhỏ nhất là 1
1 - 2 - 3 - 4 + 5 - 6 - 7 - 8 + ........... + 2013 - 2014 - 2015 - 2016
tính tổng trên , mình cần gấp
1-2-3-4+5-6-7-8+............+2013-2014-2015-2016
= (1-2)-(3-4)+(5-6)-(7-8)+.......+(2013-2014)-(2015-2016)
= (-1)-(-1)+(-1)-(-1)+.........+(-1)-(-1)
=0