K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2018

Ta có 15 = 1 + 2 + 3 + 4 + 5 

Vì a1 là số nguyên dương nên \(a_1+a_2\ge3\)điều trên xảy ra khi \(a_1=1\)và \(a_2=a_1+1\)

Tương tự với \(a_1+a_2+a_3+a_4+a_5=a_1+\left(a_1+1\right)+...+\left(a_1+a_4\right)\)

\(=5a_1+10⋮15\)

Theo nguyên lý Dirichlet thì trong 2015 số nguyên dương sẽ tồn tại ít nhất 134 số chia hết cho 15 nếu \(a_1=15\)

Nếu các số nguyên dương trên có giá trị tương đương nhau thì \(a_1+a_2+...+a_{2015}=2015a_n\)

Vậy trong nguyên lý Dirichlet thì có thể tồn tại ít nhất 134 cặp số có tổng chia hết cho 15 với \(a_n\)nhỏ nhất là 1 

3 tháng 4 2018

ygtutr

30 tháng 3 2018

Hình như bài này sử dụng định lí Đi rich lê.

6 tháng 1 2017

bài thi học kì 1 ak

6 tháng 1 2017

đề kiểm tra HKI của thành phố Tam Kì

5 tháng 1 2016

     1-2-3-4+5-6-7-8+............+2013-2014-2015-2016

=   (1-2)-(3-4)+(5-6)-(7-8)+.......+(2013-2014)-(2015-2016)

=    (-1)-(-1)+(-1)-(-1)+.........+(-1)-(-1)

=0

 

26 tháng 1 2017

thank you very much