Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi phương trình đường thẳng AB là y=ax+b
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}a+b=1\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-a=2\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=1-a=1-\left(-2\right)=3\end{matrix}\right.\)
a: Để hai đường thẳng cắt nhau trên trục tung thì \(\left\{{}\begin{matrix}m^2-2=7\\m-1< >2\end{matrix}\right.\Leftrightarrow m=-3\)
b: \(\Leftrightarrow\left\{{}\begin{matrix}10x-2y=6\\3x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}13x=13\\5x-y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a, Vì A(1;-3) năm trên đường thẳng (d) khi tọa độ điểm B thỏa mãn phương trình đường thẳng (d)
Thay x = 1 ; y = -3 vào (d) phương trình tương đương
\(-3=5-3m+1\Leftrightarrow4-3x=-3\Leftrightarrow-3x=-7\Leftrightarrow x=\frac{7}{3}\)
b ; c thiếu đề
Bài 2 :
Vì y = x + 5 có tung độ là 2
=> y = 2 + 5 = 7
Vậy y = ( 2m - 5 )x - 5m đi qua đường thẳng y = x + 5 A( 2 ; 7 )
Thay x = 2 ; y = 7 vào y = ( 2m - 5 )x - 5m ta được :
\(7=\left(2m-5\right)2-5m\Leftrightarrow4m-10-5m=7\Leftrightarrow-m=17\Leftrightarrow m=-17\)
Lời giải:
Gọi ptđt (d) là $y=ax+b$
Vì \(A,B\in (d)\Rightarrow \left\{\begin{matrix} -1=a+b\\ 7=5a+b\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} a=2\\ b=-3\end{matrix}\right.\)
Vậy ptđt (d) là : \(y=2x-3\)
PT hoành độ giao điểm giữa đường thẳng \(y=-3x+2m-9\) và đường thẳng (d) là:
\(-3x+2m-9=2x-3\)
\(\Leftrightarrow x=\frac{2m-6}{5}\)
Vậy hoành độ giao điểm giữa 2 đths là \(x_0=\frac{2m-6}{5}\)
Để 2 đường thẳng cắt nhau tại điểm nằm trên trục tung thì \(x_0=\frac{2m-6}{5}=0\Rightarrow m=3\)
Vậy $m=3$
a: Để (d) cắt (d') tại một điểm nằm trên trục tung thì
\(\left\{{}\begin{matrix}-2m+1< >2\\-m+1=m+3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2m< >1\\-m-m=3-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< >-\dfrac{1}{2}\\-2m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m< >-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-1\)
b: (d): \(y=-\left(2m-1\right)x-m+1\)
\(=-2mx+x-m+1\)
\(=m\left(-2x-1\right)+x+1\)
Tọa độ điểm cố định mà (d) luôn đi qua là:
\(\left\{{}\begin{matrix}-2x-1=0\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2x=1\\y=x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}+1=\dfrac{1}{2}\end{matrix}\right.\)
c: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\-\left(2m-1\right)x-m+1=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\\left(-2m+1\right)x=m-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{m-1}{-2m+1}\end{matrix}\right.\)
=>\(A\left(\dfrac{m-1}{-2m+1};0\right)\)
\(OA=\sqrt{\left(\dfrac{m-1}{-2m+1}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{m-1}{2m-1}\right)^2}=\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=-\left(2m-1\right)\cdot x-m+1=-\left(2m-1\right)\cdot0-m+1=-m+1\end{matrix}\right.\)
vậy: B(0;-m+1)
\(OB=\sqrt{\left(0-0\right)^2+\left(-m+1-0\right)^2}=\sqrt{\left(-m+1\right)^2}\)
\(=\left|m-1\right|\)
Vì ΔOAB vuông tại O nên \(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB\)
\(=\dfrac{1}{2}\cdot\left|m-1\right|\cdot\dfrac{\left|m-1\right|}{\left|2m-1\right|}\)
\(=\dfrac{\dfrac{1}{2}\left(m-1\right)^2}{\left|2m-1\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{1}{2}\cdot\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=1\)
=>\(\dfrac{\left(m-1\right)^2}{\left|2m-1\right|}=2\)
=>\(\left(m-1\right)^2=2\left|2m-1\right|\)(1)
TH1: m>1/2
Phương trình (1) sẽ tương đương với \(\left(m-1\right)^2=2\left(2m-1\right)\)
=>\(m^2-2m+1=4m-2\)
=>\(m^2-6m+3=0\)
=>\(\left[{}\begin{matrix}m=3+\sqrt{6}\left(nhận\right)\\m=3-\sqrt{6}\left(nhận\right)\end{matrix}\right.\)
TH2: m<1/2
Phương trình (2) sẽ tương đương với:
\(\left(m-1\right)^2=2\left(-2m+1\right)\)
=>\(m^2-2m+1=-4m+2\)
=>\(m^2-2m+1+4m-2=0\)
=>\(m^2+2m-1=0\)
=>\(\left[{}\begin{matrix}m=-1+\sqrt{2}\left(nhận\right)\\m=-1-\sqrt{2}\left(nhận\right)\end{matrix}\right.\)
a) Gọi pt đường thẳng AB là \(y=ax+b\) \(\Rightarrow\left\{{}\begin{matrix}-1=a+b\left(1\right)\\7=5a+b\left(2\right)\end{matrix}\right.\)
Lấy \(\left(2\right)-\left(1\right)\Rightarrow4a=8\Rightarrow a=2\Rightarrow b=-3\Rightarrow y=2x-3\)
b) (d) cắt đường thẳng AB tại 1 điểm trên trục tung
\(\Rightarrow\) tọa độ điểm đó là \(\left(0;-3\right)\)
\(\Rightarrow-3=2m-9\Rightarrow2m=6\Rightarrow m=3\Rightarrow\left(d\right):y=-3x-3\)