K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2018

Ta cần chứng minh BĐT phụ sau là : Với x,y>0 thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Leftrightarrow y\left(x+y\right)+x\left(x+y\right)\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

dấu = xảy ra <=> x=y

Áp dụng BĐT phụ đó , ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\)

dấu = xảy ra <=>a=b=1/2

4 tháng 1 2018

\(\frac{1}{a+1}+\frac{1}{b+1}=\frac{b+1+a+1}{\left(a+1\right)\left(b+1\right)}=\frac{1+1+1}{ab+a+b+1}=\frac{3}{ab+1+1}\)

\(=\frac{3}{a\left(1-a\right)+2}=\frac{3}{a-a^2+2}=\frac{3}{-\left(a^2-a+\frac{1}{4}\right)+\frac{9}{4}}=\frac{3}{-\left(a-\frac{1}{2}\right)^2+\frac{9}{4}}\)

\(\ge\frac{3}{\frac{9}{4}}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

NV
6 tháng 5 2021

Ta chứng minh BĐT sau với các số dương:

\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)

Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)

Áp dụng:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)

Cộng vế với vế:

\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)

NV
6 tháng 5 2021

b.

Ta có:

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)

\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)

\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)

Cộng vế với vế (1); (2) và (3):

\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

5 tháng 2 2018

ta cần chứng minh BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) với x,y>0( cái này biến đổi tương đương sẽ ra)

Áp dụng ta có \(\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}=\frac{4}{3}\left(ĐPCM\right)\)

^_^

AH
Akai Haruma
Giáo viên
13 tháng 5 2021

Lời giải:

a) Áp dụng BĐT Cô-si cho các số dương:

$a^3+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}a$

$b^3+\frac{1}{8}+\frac{1}{8}\geq \frac{3}{4}b$

$\Rightarrow a^3+b^3+\frac{1}{2}\geq \frac{3}{4}(a+b)=\frac{3}{4}$

$\Rightarrow a^3+b^3\geq \frac{1}{4}$ (đpcm)

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

b) Áp dụng BĐT Cauchy-Schwarz:

\(\frac{1}{a^3+b^3}+\frac{3}{ab}=\frac{1}{a^2-ab+b^2}+\frac{1}{ab}+\frac{1}{ab}+\frac{1}{ab}\geq \frac{(1+1+1+1)^2}{a^2-ab+b^2+ab+ab+ab}\)

\(=\frac{16}{(a+b)^2}=16\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

4 tháng 1 2019

\(\frac{a}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\) (Cô si ngược + Rút gọn)

Tương tự \(\frac{b}{1+c^2}\ge b-\frac{bc}{2};\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT,ta được: \(VT\ge\left(a+b+c\right)-\left(\frac{ab+bc+ca}{2}\right)=3-\frac{ab+bc+ca}{2}\)

Mặt khác,ta có BĐT \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) (bạn tự c/m,không làm được ib)

Thay x = a; y = b ; z = c,ta có: \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{9}{3}=3\)

Suy ra\(VT\ge3-\frac{ab+bc+ca}{2}\ge3-\frac{3}{2}=\frac{3}{2}^{\left(đpcm\right)}\)

Dấu "=" xảy ra khi a = b = c = 1

22 tháng 4 2019

\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)

áp dụng bđt AM-GM , a,b> 0

\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)

\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)

5 tháng 4 2018

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

<=>\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

<=>\(\left(a+b\right)^2\ge4ab\)

<=>\(a^2+2ab+b^2-4ab\ge0\)

<=>\(a^2-2ab+b^2\ge0\)

<=>\(\left(a-b\right)^2\ge0\)

Luôn đúng với mọi x,y.

Vậy 1/a+1/b>=4/(a+b). Dấu "=" xảy ra<=>x=y

29 tháng 4 2019

Ta có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{\left(a+b\right)^2}{ab\left(a+b\right)}\ge\frac{4ab}{ab\left(a+b\right)}\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\) (vì xy(x+y) >0 với x,y > 0)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)( Đúng)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:

Xét hiệu:

\(\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}\)

\(=\frac{(a+b)^2-4ab}{ab(a+b)}=\frac{a^2+2ab+b^2-4ab}{ab(a+b)}=\frac{a^2-2ab+b^2}{ab(a+b)}=\frac{(a-b)^2}{ab(a+b)}\geq 0, \forall a,b>0\)

\(\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\) (đpcm)

Dấu "=" xảy ra khi $a=b$