K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2018

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow\dfrac{a}{b}+\dfrac{b}{a}-2\ge0\)

\(\Leftrightarrow\dfrac{a^2+b^2-2ab}{ab}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{ab}\ge0\left(ab>0\right)\)

9 tháng 4 2018

Ta có: a,b > 0

=> \(\dfrac{a}{b},\dfrac{b}{a}>0\)

=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)

18 tháng 4 2018

Xét hiệu:

\(\dfrac{a}{b}+\dfrac{b}{a}-2=\dfrac{a^2+b^2-2ab}{ab}=\dfrac{\left(a-b\right)^2}{ab}\ge0\) ( luôn đúng)

\(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}\ge2\)

18 tháng 4 2018

áp dụng BĐT cô si cho 2 số ko âm ta có

\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}\)

<=> \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\) (đpcm)

12 tháng 4 2018

Ta có BĐT : a2 + b2 ≥ 2ab

=> \(\dfrac{a^2+b^2}{ab}\) ≥ 2

=> \(\dfrac{a}{b}+\dfrac{b}{a}\) ≥ a

Dấu " = " xảy ra khi : a = b

14 tháng 4 2018

\(\text{ Ta có : }\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{b^2}{ab}+\dfrac{a^2}{ab}\\ \\ =\dfrac{a^2+b^2}{ab}\)

Áp dụng BDT Cô-si: \(x^2+y^2\ge2xy\)

\(\Rightarrow\dfrac{b}{a}+\dfrac{a}{b}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}\ge2\left(đpcm\right)\)

Vậy \(\dfrac{b}{a}+\dfrac{a}{b}\ge2\). Đẳng thức xảy ra khi \(a=b\)

19 tháng 4 2018

a) theo định lý côsi :

\(\dfrac{a}{b}\)+\(\dfrac{b}{a}\)luôn >=2 với mọi a, b , a.b > 0

11 tháng 4 2021

Nhân 2 vế cho ab(a+b) dương ta có:

`(a+b)^2>=4ab`

`<=>(a-b)^2>=0` luôn đúng

Dấu "=" `<=>a=b`

28 tháng 4 2023

loading...

 

꧁༺ml78871600༻꧂  
2 tháng 8 2023

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

10 tháng 2 2021

Xét hiệu VT - VP

\(\dfrac{a+b}{bc+a^2}+\dfrac{b+c}{ab+b^2}+\dfrac{c+a}{ab+c^2}-\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}=\dfrac{a^2+ab-bc-a^2}{a\left(bc+a^2\right)}+\dfrac{b^2+bc-ac-b^2}{b\left(ac+b^2\right)}+\dfrac{c^2+ac-ab-c^2}{c\left(ab+c^2\right)}=\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}\)

Do a,b,c bình đẳng nên giả sử a\(\ge\)b\(\ge\)c, khi đó \(b\left(a-c\right)\)\(\ge\)0, c(b-a)\(\le\)0, a(c-b)\(\le\)0

\(a^3\ge b^3\ge c^3=>abc+a^3\ge abc+b^3\ge abc+c^3\)=>\(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}\le\dfrac{b\left(a-c\right)}{b\left(ac+b^2\right)}\)

=> VT -VP \(\le\) \(\dfrac{b\left(a-c\right)}{a\left(bc+a^2\right)}+\dfrac{c\left(b-a\right)}{b\left(ac+b^2\right)}+\dfrac{a\left(c-b\right)}{c\left(ab+c^2\right)}=\dfrac{ab-ac}{b\left(ac+b^2\right)}+\dfrac{ac-ab}{c\left(ab+c^2\right)}=\dfrac{a\left(b-c\right)}{b\left(ac+b^2\right)}-\dfrac{a\left(b-c\right)}{c\left(ab+c^2\right)}\)

mà \(\dfrac{1}{b\left(ac+b^2\right)}\le\dfrac{1}{c\left(ab+c^2\right)}\) nên VT-VP <0 đpcm

 

10 tháng 2 2021

$a,b,c$ ở đây chỉ có vai trò là hoán vị thôi nên không được giả sử $a\ge b\ge c$ đâu ạ. Nên cách này chưa trọn vẹn.

AH
Akai Haruma
Giáo viên
4 tháng 7 2019

Lời giải:

Vì $a+b+c=1$ nên:

\(\text{VT}=\frac{a(a+b+c)+bc}{b+c}+\frac{b(a+b+c)+ca}{c+a}+\frac{c(a+b+c)+ab}{a+b}\)

\(=\frac{(a+b)(a+c)}{b+c}+\frac{(b+c)(b+a)}{c+a}+\frac{(c+a)(c+b)}{a+b}\)

Đặt $(a+b,b+c,c+a)=(x,y,z)$. Bài toán trở thành:

Cho $x,y,z>0$ thỏa mãn $x+y+z=2$. CMR: \(\text{VT}=\frac{xz}{y}+\frac{xy}{z}+\frac{yz}{x}\geq 2\)

----------------------

Thật vậy:\(\text{VT}=\frac{x^2z^2+x^2y^2+y^2z^2}{xyz}\). Theo hệ quả quen thuộc của BĐT AM-GM thì $x^2y^2+y^2z^2+z^2x^2\geq xyz(x+y+z)=2xyz$

\(\Rightarrow \text{VT}=\frac{x^2z^2+x^2y^2+y^2z^2}{xyz}\geq \frac{2xyz}{xyz}=2\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=\frac{2}{3}$ hay $a=b=c=\frac{1}{3}$