K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 10

Lời giải:

Trước khi $a$ là số nguyên tố thì $a$ cần là số nguyên.

Để $a$ nguyên thì với $n\in\mathbb{N}$, ta có:

$n+8\vdots 2n-5$

$\Rightarrow 2(n+8)\vdots 2n-5$
$\Rightarrow (2n-5)+21\vdots 2n-5$

$\Rightarrow 21\vdots 2n-5$

$\Rightarrow 2n-5\in\left\{\pm 1; \pm 3; \pm 7; \pm 21\right\}$

$\Rightarrow n\in \left\{3; 2; 4; 1; 6; -1; 13; -8\right\}$

Do $n$ tự nhiên nên $n\in \left\{3; 2; 4; 1; 6; 13\right\}$
Thử lần lượt các giá trị $n$ vào $a$ ta được:

$n\in\left\{3; 6\right\}$ thỏa mãn 

13 tháng 3 2016

uế ảnh đại diện là cậu hả xấu thể dời đi đúng cho thiên hạ nhìn thấy người ta cười cho daty đã xấu rồi cứ cố gắng đăng lên làm gì đòi đi

13 tháng 3 2016

linh oi vay nhin lai bn xem xinh bang bn y chua ma che ma co xinh hon thi da sao mink thay bn y cung xinh ma

22 tháng 2 2021
Hcixicoycyo7cpyocyocyoc7pcyoc
28 tháng 4 2018

Giải câu b trước nha.

b) Ta có: A = 2n+2/2n = 2n/2n + 2/2n = 1 + 1/n

Có 1 là số nguyên => Để A là số nguyên thì 1/n là số nguyên

=> n = {-1;1}

Vậy n=1 hoặc n=-1 thì A là số nguyên.

a) Để A là phân số thì n khác 1 và -1 ( theo câu b )