K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

Câu 1 đặt cái đó bằng k^2 rồi có (k-a)(k+a)=2004 rồi xét trường hợp

16 tháng 12 2019

Câu 2 đặt 4a^2+2018=k^2.Dễ thấy k^2 chia hết 2 nên k^2 chia hết cho 4.Mà 4a^2 chia hết 4 và 2018 ko chia hết 4 nên suy ra vô lí

20 tháng 2 2023

Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)

A = 2018 + ( 2k+ 1+ 1)2 

A = 2018 + (2k+2)2

A = 2018 + 4.( k+1)2 ⇒ A  ⋮ 2 Nếu A là số chính phương 

⇒ A ⋮ 4 ( tính chất 1 số chính phương ) 

⇒ 2018 ⋮ 4 ( vô lý)

Nếu n là số chẵn  n =2k ( k \(\in\) N)

A = 2018 + ( 2k + 1)2

2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)

A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.

Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương 

 

Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) =  a + n - a +n = 2n ( chia hết cho 2 )

\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ 
Vậy ta kết luận:  2018 + n^2 không là số chính phương