Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 13726 chia a dư 73
Nên \(13762-73⋮a\Leftrightarrow13689⋮a\)(1)
Tương tự : 12197 chia a dư 29
Nên \(12197-29⋮a\Leftrightarrow12168⋮a\) (2)
Từ (1) và (2) \(\Rightarrow\)a \(\inƯC\left(13689,12168\right)\)
Mà \(ƯC\left(13689,12168\right)=1521\) , \(\sqrt{1521}=39\) (TM a là số chính phương)
Vậy số cần tìm là 1521
a chia 5 dư 3 =>a=5k+3
a chia 5 dư 4 =>a=5c+4
=>ab=(5k+3)(5c+4)=(5k+3)5c+(5k+3)4=(5k+3)5c+5.4k+12
=5[(5k+3)c+4k]+5.2+2=5[(5k+3)c+4k+1]+2 chia 5 dư 2
=>đpcm
Gọi số tự nhiên cần tìm là a
Do a chia 29 dư 5; chia 31 dư 27
=> a = 29.m + 5 = 31.n + 27 (m,n thuộc N*)
=> 29.m = 31.n + 22
=> 29.m = 29.n + 2.n + 22
=> 29.m - 29.n = 2.n + 22
=> 29.(m - n) = 2.n + 22
=> 2.n + 22 chia hết cho 29
Mà a nhỏ nhất => n nhỏ nhất => 2.n + 22 nhỏ nhất; 2.n + 22 là số chẵn
=> 2.n + 22 = 58
=> 2.n = 58 - 22 = 36
=> n = 36 : 2 = 18
=> a = 31.18 + 27 = 585
Vậy số cần tìm nhỏ nhất là 585
13762 chia a dư 73 => 13762-73 =13689\(⋮a\)
12197 chia a dư 29 => 12197-29=12168 \(⋮a\)
ƯCLN( 13689;12168)=1521
=> a \(\inƯ\left(1521\right)\)
Mà 1521 là số chính phương
=> a=1521
a là 169