K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2023

A = \(\dfrac{3n+1}{2n+3}\) (n \(\ne\) - \(\dfrac{3}{2}\))

\(\in\) Z ⇔ 3n + 1 ⋮ 2n + 3

             6n + 2 ⋮ 2n + 3

         6n + 9 - 7 ⋮ 2n + 3

    3.(2n + 3) - 7 ⋮ 2n + 3

                      7 ⋮ 2n + 3 ⇒ 2n + 3 \(\in\) Ư(7) = { -7; -1; 1; 7}

Lập bảng ta có: 

2n+3 -7 -1 1 7
n -5 -2 -1 2

Vậy các số nguyên n thỏa mãn đề bài là:

\(\in\) { -5; -2; -1; 2}

            

27 tháng 8 2023

\(A=\dfrac{3n+1}{2n+3}\inℤ\) \(\left(n\ne-\dfrac{3}{2}\right)\)

\(\Rightarrow3n+1⋮2n+3\)

\(\Rightarrow2\left(3n+1\right)-3\left(2n+3\right)⋮2n+3\)

\(\Rightarrow6n+2-6n-9⋮2n+3\)

\(\Rightarrow-7⋮2n+3\)

\(\Rightarrow2n+3\in\left\{-1;1;-7;7\right\}\)

\(\Rightarrow n\in\left\{-2;-1;-5;2\right\}\)

26 tháng 8 2023

a) Đặt \(ƯCLN\left(5a+3,7a+4\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}5a+3⋮d\\7a+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}35a+21⋮d\\35a+20⋮d\end{matrix}\right.\)

\(\Rightarrow\left(35a+21\right)-\left(35a+20\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(5a+3,7a+4\right)=1\) hay phân số \(\dfrac{5a+3}{7a+4}\) là phân số tối giản. Thế thì phân số này không thể rút gọn cho nguyên nào khác 1.

b) \(A=\dfrac{5a+3}{7a+4}\)

\(A=\dfrac{\dfrac{5}{7}\left(7a+4\right)+\dfrac{1}{7}}{7a+4}\)

\(A=\dfrac{5}{7}+\dfrac{1}{7\left(7a+4\right)}\)

 Nếu \(a< 0\) thì \(A< \dfrac{5}{7}\) còn nếu \(a\ge0\) thì \(A>\dfrac{5}{7}\). Do đó ta chỉ cần tìm giá trị lớn nhất của A khi \(a>0\). Để A lớn nhất thì \(7a+4\) nhỏ nhất hay \(a=0\). Vậy để phân số A lớn nhất thì \(a=0\)

1 tháng 9 2023

a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)

\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)

b) \(2n+7⋮n+1\left(n\inℤ\right)\)

\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)

\(\Rightarrow2n+7-2n-2⋮n+1\)

\(\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)

c) \(xy+x-y=6\left(x;y\inℤ\right)\)

\(\Rightarrow x\left(y+1\right)-y-1+1=6\)

\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)

\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)

\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)

\(A=\dfrac{6n+3-2}{2n+1}=3-\dfrac{2}{2n+1}\)

Để A max thì 2/2n+1 min

mà n nguyên

nên 2n+1=-1

=>2n=-2

=>n=-1

10 tháng 8 2016

Để \(\frac{4n+3}{3n+1}\) thuộc Z thì 4n + 3 chia hết cho 3n + 1

\(\Rightarrow3\left(4n+3\right)⋮3n+1\)

\(\Rightarrow12n+9⋮3n+1\)

\(\Rightarrow\left(12n+4\right)+5⋮3n+1\)

\(\Rightarrow4\left(3n+1\right)+5⋮3n+1\)

\(\Rightarrow5⋮3n+1\)

\(\Rightarrow3n+1\in\left\{\pm1;\pm5\right\}\)

+) 3n + 1 = 1\(\Rightarrow n=0\) ( chọn )

+) \(3n+1=-1\Rightarrow n=\frac{-2}{3}\) ( loại )

+) \(3n+1=5\Rightarrow n=\frac{4}{3}\) ( loại )

+) \(3n+1=-5\Rightarrow n=-2\)

Vậy n = 0 hoặc n = -2

 

3 tháng 12 2021

\(a,A=\dfrac{-3\left(2n-3\right)-8}{2n-3}=-3-\dfrac{8}{2n-3}\in Z\\ \Leftrightarrow2n-3\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\\ \Leftrightarrow n\in\left\{1;2\right\}\left(n\in Z\right)\)

\(b,\dfrac{ab}{a+2b}=\dfrac{3}{2}\Leftrightarrow\dfrac{a+2b}{ab}=\dfrac{2}{3}\Leftrightarrow\dfrac{1}{b}+\dfrac{2}{a}=\dfrac{2}{3}\\ \dfrac{bc}{b+2c}=\dfrac{4}{3}\Leftrightarrow\dfrac{b+2c}{bc}=\dfrac{3}{4}\Leftrightarrow\dfrac{1}{c}+\dfrac{2}{b}=\dfrac{3}{4}\\ \dfrac{ca}{c+2a}=3\Leftrightarrow\dfrac{c+2a}{ca}=\dfrac{1}{3}\Leftrightarrow\dfrac{1}{a}+\dfrac{2}{c}=\dfrac{1}{3}\)

Cộng vế theo vế \(\Leftrightarrow\dfrac{3}{a}+\dfrac{3}{b}+\dfrac{3}{c}=\dfrac{2}{3}+\dfrac{3}{4}+\dfrac{1}{3}=\dfrac{7}{4}\)

\(\Leftrightarrow3\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{7}{4}\\ \Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{7}{12}\\ \Leftrightarrow\dfrac{ab+bc+ca}{abc}=\dfrac{7}{12}\\ \Leftrightarrow T=\dfrac{12}{7}\)

9 tháng 9 2018

Bài 1.

Giải

a) Ta có: \(A=\dfrac{3n+9}{n-4}=\dfrac{3n-12+21}{n-4}=\dfrac{3\left(n-4\right)+21}{n-4}=3+\dfrac{21}{n-4}\)

Để \(A\in Z\) thì \(\dfrac{21}{n-4}\in Z\)

\(\Rightarrow21⋮\left(n-4\right)\)

\(\Rightarrow\left(n-4\right)\inƯ\left(21\right)\)

\(\Rightarrow\left(n-4\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)

Ta có bẳng sau:

\(n-4\) \(-21\) \(-7\) \(-3\) \(-1\) \(1\) \(3\) \(7\) \(21\)
\(n\) \(-17\) \(-3\) \(1\) \(3\) \(5\) \(7\) \(11\) \(25\)

Vậy \(n\in\left\{-17;-3;1;3;5;7;11;25\right\}\) thì \(A\in Z.\)

b) Ta có: \(B=\dfrac{6n+5}{2n-1}=\dfrac{6n-3+8}{2n-1}=\dfrac{3\left(2n-1\right)+8}{2n-1}=3+\dfrac{8}{2n-1}\)

Để \(B\in Z\) thì \(\dfrac{8}{2n-1}\in Z\)

\(\Rightarrow8⋮\left(2n-1\right)\)

\(\Rightarrow\left(2n-1\right)\inƯ\left(8\right)\)

\(\Rightarrow\left(2n-1\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

Ta có bảng sau:

\(2n-1\) \(-8\) \(-4\) \(-2\) \(-1\) \(1\) \(2\) \(4\) \(8\)
\(2n\) \(-7\) \(-3\) \(-1\) \(0\) \(2\) \(3\) \(5\) \(9\)
\(n\) \(\dfrac{-7}{2}\) \(\dfrac{-3}{2}\) \(\dfrac{-1}{2}\) \(0\) \(1\) \(\dfrac{3}{2}\) \(\dfrac{5}{2}\) \(\dfrac{9}{2}\)

Vậy \(n\in\left\{\dfrac{-7}{2};\dfrac{-3}{2};\dfrac{-1}{2};0;1;\dfrac{3}{2};\dfrac{5}{2};\dfrac{9}{2}\right\}\)

9 tháng 9 2018

Bạn Nguyen Thi Huyen giải bài 1 rồi nên mình giải tiếp các bài kia nhé!

Bài 2:

\(\dfrac{x-18}{2000}+\dfrac{x-17}{2001}=\dfrac{x-16}{2002}+\dfrac{x-15}{2003}\)

\(\Leftrightarrow\left(\dfrac{x-18}{2000}-1\right)+\left(\dfrac{x-17}{2001}-1\right)=\left(\dfrac{x-16}{2002}-1\right)+\left(\dfrac{x-15}{2003}-1\right)\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}=\dfrac{x-2018}{2002}+\dfrac{x-2018}{2003}\)

\(\Leftrightarrow\dfrac{x-2018}{2000}+\dfrac{x-2018}{2001}-\dfrac{x-2018}{2002}-\dfrac{x-2018}{2003}=0\)

\(\Leftrightarrow\left(x-2018\right)\left(\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}-\dfrac{1}{2003}\right)=0\)

Dễ thấy \(\dfrac{1}{2000}>\dfrac{1}{2001}>\dfrac{1}{2002}>\dfrac{1}{2003}\) nên:

\(\dfrac{1}{2000}+\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}\ne0\). Do đó:

\(x-2018=0\Leftrightarrow x=2018\)

Bài 3:

a) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{20}{4x}+\dfrac{xy}{4x}=\dfrac{20+xy}{4x+4x}=\dfrac{20+xy}{8x}=\dfrac{1}{8}\)

Hoán vị ngoại tỉ ta có: \(\dfrac{20+xy}{8x}=\dfrac{1}{8}\Leftrightarrow\dfrac{8}{8x}=\dfrac{1}{x}=\dfrac{1}{8}\Leftrightarrow x=8\)

Thế x = 8 vào : \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\) .Ta có: \(\dfrac{5}{8}+\dfrac{y}{4}=\dfrac{1}{8}\Leftrightarrow\dfrac{y}{4}=\dfrac{1}{8}-\dfrac{5}{8}=\dfrac{-2}{4}\). Ta có: \(\dfrac{y}{4}=\dfrac{-2}{4}\Leftrightarrow y=-2\)

Vậy: \(\left[{}\begin{matrix}x=8\\y=-2\end{matrix}\right.\)

b) \(\dfrac{1}{x}-\dfrac{2}{y}=\dfrac{3}{1}\Rightarrow\dfrac{y}{x}-2=\dfrac{3}{1}\) (hoán vị ngoại tỉ)

\(\Leftrightarrow\dfrac{y}{x}=\dfrac{5}{1}\). Suy ra nghiệm x,y có dạng \(\left[{}\begin{matrix}x=1k\\y=5k\end{matrix}\right.\left(k\in Z\right)\). Bằng các phép thử lại ta dễ dàng suy ra x,y vô nghiệm.