K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2017

Ta có : 1+4+4^2+.............+4^15 có 16 số hạng 

Mà 16 : 2 =8

\(\Rightarrow\)(1+4)+(4^2+4^3)+..............+(4^14+4^15)

\(\Rightarrow\)(1+4)+(1+4).4+...........+(1+4)4^13

\(\Rightarrow\)(1+4)(1+4+......+4^13)

\(\Rightarrow\)5(1+4+.....+4^13)  \(⋮\)5   (ĐPCM)

11 tháng 2 2017

Giải:

Theo đề ta có: 1 + 4 + 4^2 +. . . .+ 4^15 có 16 số hạng

Mà 16 : 2 = 8

=> (1 + 4) + (4^2 + 4^3) +. . . .+(4^14 + 4^15)

=> (1 + 4) + (1 + 4) . 4 +. . . .+ (1 + 4) . 4^13

=> (1 + 4) . (1 + 4+. . . .+ 4 ^13)

=> 5 . (1 +4 +. . . .+ 4^13)   \(⋮\)5 (điều phải chứng minh)

20 tháng 7 2016

a) 1 mũ 3 + 2 mũ 3 bằng 2 mũ 3

b) 1 mũ 3 + 2 mũ 3 + 3 mũ 3 bằng 6 mũ 3

c) 1 mũ 3 + 2 mũ 3 + 3 mũ 3 + 4 mũ 3 bằng 10 mũ 3

Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:

  • Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mình
  • Chỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.
27 tháng 2 2015

phân số nên mik k viết đc

10 tháng 7 2017

1)5x+1 + 6.5x+1 = 875

   5x+1 ( 1+6 ) = 875

   5x+1 . 7 = 875

5x+1 = 875 : 7

5x+1 = 125

5x+1 = 53

x+1 = 3

x = 3 - 1

x = 2

2)3x+1 + 3x+3 = 810

  3x . 3 + 32 . 3x+1 = 810

  3x . 3 + 9 . 3x . 3 = 810

  3x .3 ( 1 + 9 ) = 810

  3x+1 . 10 = 810

  3x+1 = 810 : 10

  3x+1 = 81

  3x+1 = 34 

x+1 = 4

x = 4-1

x = 3

Ta có : 

\(n^2 - 1 = (n-1)(n+1)\)

\(n \) là nguyên tố lớn hơn \(3 \implies n-1;n+1\) là hai số chẵn liên tiếp 

\(=> (n-1)(n+1) \) chia hết cho \(8\)    \((1)\)

Vì \(n \) là nguyên tố lớn hơn 3 nên ta có : \(n = 3k +1 ; 3k +2\) \((2)\)

Với \(n= 3k + 1\)

\(=> (n-1)(n+1) = (3k+1-1)(n+1) = 3k(n+1) \) chia hết cho 3 

Với \(n = 3k+2\)

\(=> (n-1)(n+1) = (n-1)(3k+2+1) = (n-1)(k+1)3 \) chi hết cho 3

- Từ \((1) \),\((2)\) ta thấy \((n-1)(n+1) = n^2 -1\) chia hết cho cả \(8;3\)

\(=> n^2 - 1 \) chia hết cho \(24 (đpcm)\)

10 tháng 12 2023

\(A=5+5^2+5^3+5^4+...+5^{11}+5^{12}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)

\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{10}\left(5+5^2\right)\)

\(=30\left(1+5^2+...+5^{10}\right)⋮30\)

26 tháng 7 2019

#)Giải : 

Vì p là số nguyên tố ≥ 5 nên p có dạng 6m + 1 hoặc 6m - 1 \(\left(m\in N;m\ge1\right)\)

\(\Rightarrow p^2=6n+1\left(n\in N;n\ge0\right)\)

Tương tự, ta cũng có :

\(\hept{\begin{cases}q^2=6k+1\left(k\in N;k\ge1\right)\\r^2=6t+1\left(t\in N;t\ge1\right)\end{cases}}\)

\(\Rightarrow p^2+q^2+r^2=6a+3\left(a\in N;a\ge1\right)\)

\(\Rightarrowđpcm\)

15 tháng 12 2018

Ta có 567 có chữ số tận cùng là 7

=> số có chữ số tận cùng là 7 mũ 4 lên thì sẽ có chữ số tận cùng là 1

=> số có chữ số tận cùng là 1 mũ 3 lên thì sẽ có chữ số tận cùng là 1

=> số có chữ số tận cùng là 1 mũ 2 lên thì sẽ có chữ số tận cùng là 1

Vậy 567 mũ 4 mũ 3 mũ 2 có chữ số tận cùng là 1(mk ko bít có đúng ko nửa :))