Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có các trường hợp sau :
TH1 : a và b là số nguyên dương ( a > b )
\(\Leftrightarrow\) a - b > 0 ; b - a < 0
\(\Rightarrow\) m = ( a - b ) ( b - a ) ( tích của hai số trái dấu ) luôn âm ( là số nguyên âm )
TH2 : a và b là số nguyên âm ; a > b
\(\Leftrightarrow\) a - b > 0 ; b - a < 0
\(\Rightarrow\) m = ( a - b ) ( b - a ) luôn âm ( tích của hai số trái dấu )
TH3 : a và b là số nguyên dương ( a < b )
\(\Leftrightarrow\) a - b < 0 ; b - a > 0
\(\Rightarrow\) m = ( a - b ) ( b - a ) luôn âm ( tích của hai số trái dấu )
TH4 : a và b là số nguyên âm ( a < b )
\(\Leftrightarrow\) a - b < 0 ; b - a > 0
\(\Rightarrow\) m = ( a - b ) ( b - a ) luôn âm ( tích của hai số trái dấu )
Vậy với a và b là hai số nguyên thì kết luận được m = ( a - b ) ( b - a ) luôn âm
Ta có: a,b là 2 số nguyên khác nhau
\(\Rightarrow\left[{}\begin{matrix}a>b\\a< b\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}a-b>0,b-a< 0\\a-b< 0,b-a>0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(a-b\right)\left(b-a\right)< 0\\\left(a-b\right)\left(b-a\right)< 0\end{matrix}\right.\)
Mà \(a,b\in Z\Leftrightarrow\left(a-b\right)\left(b-a\right)\in Z\)
Vậy \(m=\left(a-b\right)\left(b-a\right)\) luôn là số nguyên âm với mọi a,b là 2 số nguyên khác nhau
a, Bạn Việt nói đúng. Vì: a và -a đối nhau và a2 = (-a)2
b, Bạn Nam nói đúng. Vì: Số nguyên dương khi có luỹ thừa bậc chẵn thì vẫn là số nguyên dương. Còn số nguyên âm khi có luỹ thừa bậc chẵn thì cũng thành số nguyên dương.
Ta có: a-b+b-a=(a-a)+(-b+b)=0
=> a-b và b-a là 2 số đối nhau
Mà a ≠b nên a-b và b-a khác 0
Do vậy (a-b)(b-a) là 2 số nguyên âm