K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

a) 102011 + 8 = 10...0(2011 chữ số 0) + 8 \(⋮\)(Có tổng các chữ số là 1 + 0 + 8 = 9\(⋮\)9)

b) Hiệu 7.9.11 - 8.7.6 là hợp số.

c)

  1. x + |x| = 0

=> x là số nguyên âm

  2. x - |x| = 0

=> x là số nguyên dương

17 tháng 12 2017

a) không chia hết cho 9 vì mọi số có chữ số tậ cùng là 0 thì lũa thừa bao nhiêu cũng cs tận cùng là 0
b) là hợp số vì (7.9.11 ) chia hết cho 7 , mà (8.7.6) chia hết cho 7 suy ra tích của (7.9.11) và (8.7.6) là hợp số mà hợp số là số lẻ nên hiệu của 2 số lẻ là 1 số chẵn nên hiệu 7.9.11 - .8.7.6 là hợp số
 

27 tháng 12 2015

Công thức đặc biệt: a chia b dư 0 hoặc 1 thì an cũng chia b dư 0 hoặc 1.

a, Ta thấy 10 chia cho 9 dư 1 => 102011 chia cho 9 dư 1

                                            Mà 8 chia cho 9 dư 8

Từ 2 điều trên => 102011 + 8 chia 9 dư 1 + 8 hay chia hết cho 9

Vậy...

b, Vì 13a5b chia hết cho 5 => b thuộc {0; 5}

+ Nếu b = 0 thì ta có:

13a50 chia hết cho 3 

=> 1 + 3 + a + 5 + 0 chia hết cho 3

=> 9 + a chia hết cho 3

=> a thuộc {0; 3; 6; 9}

Vậy...

+ Nếu b = 5 thì ta có:

13a55 chia hết cho 3

=> 1 + 3 + a + 5 + 5 chia hết cho 3

=> 14 + a chia hết cho 3

=> a thuộc {1; 4; 7}

Vậy...

 

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì: A. Điểm Q nằm giữa hai điểm P và M B. Điểm M nằm giữa hai điểm P và Q C. Điểm P nằm giữa hai điểm M và Q D. Không có điểm nào nằm giữa hai điểm kia.Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số....
Đọc tiếp

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.

Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì: A. Điểm Q nằm giữa hai điểm P và M B. Điểm M nằm giữa hai điểm P và Q C. Điểm P nằm giữa hai điểm M và Q D. Không có điểm nào nằm giữa hai điểm kia.

Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số. Tập hợp M gồm có bao nhiêu phần tử?

A. 2 phần tử B. 5 phần tử C. 4 phần tử D. 3 phần tử

Câu 3: Để số a34b vừa chia hết cho 3, vừa chia hết cho 5 thì chữ số thích hợp thay a ; b là:

A. 0 B. 5 C. 0 hoặc 5 D. Không có chữ số nào thích hợp.

Câu 4: Kết quả của phép tính (– 28) + 18 bằng bao nhiêu?

A. 46 B. – 46 C. 10 D. – 10

Câu 5: Trong phép chia hai số tự nhiên, nếu phép chia có dư, thì:

A. Số dư bao giờ cũng lớn hơn số chia

B. Số dư bằng số chia

C. Số dư bao giờ cũng nhỏ hơn số chia

D. Số dư nhỏ hơn hay bằng số chia

Câu 6: Kết quả của phép tính m8. m4 khi được viết dưới dạng một luỹ thừa thì kết quả đúng là: A. m12 B. m2 C. m32 D. m4

Phần II:

Câu 7: Thực hiện các phép tính sau: a) 56 : 53 + 23 . 22 b) (– 5) + (– 10) + 16 + (– 7)

Câu 8: Tìm x, biết: a) (x – 35) – 120 = 0 b) 12x – 23 = 33 : 27 c) x + 7 = 0

Câu 9: a) Phân tích số 60 ra thừa số nguyên tố.

b) Tìm Ư(30).

Câu 10: Cho đoạn thẳng AB dài 8cm. Trên tia AB lấy điểm M sao cho AM = 4cm.

a.Điểm M có nằm giữa hai điểm A và B không? Vì sao?

b.So sánh AM và MB

c.Điểm M có phải là trung điểm của AB không? Vì sao?

Câu 11: Tìm số tự nhiên lớn nhất có bốn chữ số sao cho khi đem số đó lần lượt chia cho các số 11, 13 và 17 thì đều có số dư bằng 7.

—- HẾT —–

 

1

Câu 8:

a: x-35-120=0

=>x-35=120

hay x=155

b: \(12x-23=33:27\)

=>12x-23=11/9

=>12x=218/9

hay x=109/54

c: x+7=0

=>x=0-7

=>x=-7

Câu 9: 

a: \(60=2^2\cdot3\cdot5\)

b: Ư(30)={1;2;3;5;6;10;15;30}

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì:A. Điểm Q nằm giữa hai điểm P và M B. Điểm M nằm giữa hai điểm P và Q C. Điểm P nằm giữa hai điểm M và QD. Không có điểm nào nằm giữa hai điểm kia. Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số....
Đọc tiếp

Phần I: (3 điểm) Trong các câu hỏi sau, hãy chọn phương án trả lời đúng, chính xác nhất và trình bày vào tờ giấy bài làm.

Câu 1: Cho ba điểm M, P, Q thẳng hàng. Nếu MP + PQ = MQ thì:

A. Điểm Q nằm giữa hai điểm P và M

B. Điểm M nằm giữa hai điểm P và Q

C. Điểm P nằm giữa hai điểm M và Q

D. Không có điểm nào nằm giữa hai điểm kia.

Câu 2: Gọi M là tập hợp các số nguyên tố có một chữ số. Tập hợp M gồm có bao nhiêu phần tử?

A. 2 phần tử

B. 5 phần tử

C. 4 phần tử

D. 3 phần tử

Câu 3: Để số —34— vừa chia hết cho 3, vừa chia hết cho 5 thì chữ số thích hợp ở vị trí dấu ? là:

A. 0

B. 5

C. 0 hoặc 5

D. Không có chữ số nào thích hợp.

Câu 4: Kết quả của phép tính (– 28) + 18 bằng bao nhiêu?

A. 46

B. – 46

C. 10

D. – 10

Câu 5: Trong phép chia hai số tự nhiên, nếu phép chia có dư, thì:

A. Số dư bao giờ cũng lớn hơn số chia

B. Số dư bằng số chia

C. Số dư bao giờ cũng nhỏ hơn số chia

D. Số dư nhỏ hơn hay bằng số chia

Câu 6: Kết quả của phép tính m8. m4 khi được viết dưới dạng một luỹ thừa thì kết quả đúng là:

A. m12

B. m2

C. m32

D. m4

Phần II: (7 điểm)

Câu 7: Thực hiện các phép tính sau:

a) 56 : 53 + 23 . 22

b) (– 5) + (– 10) + 16 + (– 7)

Câu 8: Tìm x, biết:

a) (x – 35) – 120 = 0

b) 12x – 23 = 33 : 27

c) x + 7 = 0

Câu 9: a) Phân tích số 60 ra thừa số nguyên tố.

b) Tìm Ư(30).

Câu 10: Cho đoạn thẳng AB dài 8cm. Trên tia AB lấy điểm M sao cho AM = 4cm.

a.Điểm M có nằm giữa hai điểm A và B không? Vì sao?

b.So sánh AM và MB

c.Điểm M có phải là trung điểm của AB không? Vì sao?

Câu 11: Tìm số tự nhiên lớn nhất có bốn chữ số sao cho khi đem số đó lần lượt chia cho các số 11, 13 và 17 thì đều có số dư bằng 7.

— HẾT —

 

1
11 tháng 12 2016

Phần I :

 

7 tháng 2 2020

a. Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

12 tháng 3 2022

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿