K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có: \(a< b\)

\(\Rightarrow-3a>-3b\)

\(\Rightarrow-3a+2023>-3b+2023\)

27 tháng 1 2023

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2023}=\dfrac{1}{a+b+c}\)

\(\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)

\(\left(a+b\right)\left(\dfrac{1}{ab}+\dfrac{1}{c\left(a+b+c\right)}\right)=0\)

\(\left(a+b\right)\left[\dfrac{ab+bc+ca+c^2}{abc\left(a+b+c\right)}\right]=0\)

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-b\\b=-c\\c=-a\end{matrix}\right.\)

Đến đây bạn thay vào nữa là được nhé

27 tháng 1 2023

cảm ơn nhìu

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

24 tháng 11 2017

 Vì a < b

⇒ 3a < 3b (nhân hai vế với 3 > 0, BĐT không đổi chiều)

⇒ 3a + 1 < 3b + 1 (cộng hai vế với 1).

Vậy 3a + 1 < 3b + 1.

28 tháng 3 2023

Ta có a<b

=>-3a>-3b

=>2-3a>2-3b(1)

mà 2-3b>1-3b(2)

Từ (1),(2)=>2-3a>1-3b

19 tháng 9 2023

\(P=\dfrac{1}{bc\left(b+c\right)+2023}+\dfrac{1}{ca\left(c+a\right)+2023}+\dfrac{1}{ab\left(a+b\right)+2023}\left(abc=2023\right)\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(b+c\right)+abc}+\dfrac{1}{ca\left(c+a\right)+abc}+\dfrac{1}{ab\left(a+b\right)+abc}\)

\(\Leftrightarrow P=\dfrac{1}{bc\left(a+b+c\right)}+\dfrac{1}{ca\left(a+b+c\right)}+\dfrac{1}{ab\left(a+b+c\right)}\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left(\dfrac{1}{bc}+\dfrac{1}{ca}+\dfrac{1}{ab}\right)\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{a^2bc+b^2ca+c^2ab}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{\left(a+b+c\right)}\left[\dfrac{abc\left(a+b+c\right)}{\left(abc\right)^2}\right]\)

\(\Leftrightarrow P=\dfrac{1}{abc}=\dfrac{1}{2023}\)

8 tháng 6 2020

Bài làm

Ta có: a > b

=> 3a > 3b

=> 3a + 4 > 3b + 4                (1)

Mà 4 > 3

=> 3b + 4 > 3b + 3                (2)

Từ (1) và (2) => 3a + 4 > 3b + 3 ( đpcm )