K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2023

Ta có a<b

=>-3a>-3b

=>2-3a>2-3b(1)

mà 2-3b>1-3b(2)

Từ (1),(2)=>2-3a>1-3b

24 tháng 11 2017

 Vì a < b

⇒ 3a < 3b (nhân hai vế với 3 > 0, BĐT không đổi chiều)

⇒ 3a + 1 < 3b + 1 (cộng hai vế với 1).

Vậy 3a + 1 < 3b + 1.

6 tháng 11 2017

Có 2a^2 + a = 3b^2 + b

<=> 2a^2 + a - 3b^2 - b = 0

<=> 3a^2 + a - 3b^2 - b = a^2

Xét (a-b).(3a+3b+1) = 3a^2-3ab+3ab-3b^2+a-b = 3a^2-3b^2+a-b = a^2 là 1 số chính phương (1)

Gọi ƯCLN của a-b;3a+3b+1 là d ( d thuộc N sao )

 => a-b chia hết cho d

     3a+3b+1 chia hết cho d

     a^2 chia hết cho d^2

=> a-b chia hết cho d , 3a+3b +1 chia hết cho d , a chia hết cho d

=> a chia hết cho d , b chia hết cho d , 3a+3b+1 chia hết cho d

=> 1 chia hết cho d => d = 1 ( vì d thuộc N sao )

=> a-b và 3a+3b+1 nguyên tố cùng nhau (2)

Từ (1) và (2) => a-b và 3a+3b+1 đều là số chính phương

3 tháng 8 2023

Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.

Ta có: a<b

⇔3a<3b

hay 3a+2<3b+2(đpcm)

https://olm.vn/hoi-dap/detail/92192540983.html

Câu hỏi của La Văn Lết - Toán lớp 8

Bạn tham khảo ở đây nhé

8 tháng 4 2019

Câu hỏi của La Văn Lết - Toán lớp 8 - Học toán với OnlineMath

Em thma khảo bài làm tại link này nhé!

25 tháng 3 2023

Sửa đề: Chứng minh 3a + 2 < 3b + 5

a ≤ b

⇒ 3a ≤ 3b

⇒ 3a + 2 ≤ 3b + 2 (1)

2 < 5

⇒ 3b + 2 < 3b + 5 (2)

Từ (1) và (2) ⇒ 3a + 2 < 3b + 5

25 tháng 6 2019

a)Ta có: a^2 + b^2 + c^2 = ab + bc + ca 
<=> 2.a^2 + 2.b^2 + 2.c^2 = 2.ab + 2.bc + 2.ca 
<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc +c^2 ) + ( c^2 - 2ac + a^2 ) =0 
<=> (a-b)^2 + (b-c)^2 + (c -a)^2 =0 (1) 
Vì (a-b)^2 ; (b-c)^2 ; (c -a)^2 ≧ 0 với mọi a,b,c. 
=> (a-b)^2 + (b-c)^2 + (c -a)^2 ≧ 0 (2) 
Từ (1) và (2) khẳng định dấu "=" khi: 
a - b = 0; b - c = 0 ; c - a = 0 => a=b=c 
Vậy a=b=c.

b)Ta có: 
A = (5a – 3b + 8c)(5a – 3b –8c) 
= (5a –3b)² – (8c)² 
= (25a² – 30ab +9b²) – 64c² 
Mà theo đề thì 4c² = a² –b² 
Nên ta suy ra: 
A = (25a² – 30ab +9b²) – 16(a² –b²) 
= 9a² –30ab +25b² 
= (3a –5b)² 
25 tháng 6 2019

\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Rightarrow a=b=c\)