Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé
em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x
như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0
\(ab+2bc+3ac\)
\(=\left(ab+ac\right)+\left(2bc+2ac\right)\)
\(=a\left(b+c\right)+2c\left(a+b\right)\)
\(=-a^2-2c^2\le0\)
Ta có : a + b + c = 0
\( \implies\) b + c = - a ; a + b = - c
Ta có : ab + 2bc + 3ca
= ab + 2bc + ca + 2ca
= ( ab + ca ) + ( 2bc + 2ca )
= a ( b + c ) + 2c ( a + b )
= a ( - a ) + 2c ( - c )
= - a2 - 2c2
= - ( a2 + 2c2 ) ( * )
Mà : a2 \(\geq\) 0 ; 2c2 \(\geq\) 0
\( \implies\) a2 + 2c2 \(\geq\) 0 ( ** )
Từ ( * ) ; ( ** )
\( \implies\) - ( a2 + 2c2 ) \(\leq\) 0
\( \implies\) ab + 2bc + 3ca \(\leq\) 0
*)a=-0,372870255
b=0,69
c=0,89
thỏa mãn bằng 2
*)a=0
b=0,1
c=0,11
thỏa mãn bé hơn 2 mà các số lớn hớn 0 đều lớn hơn a,b,c theo trình tự nên mọi 0<=a<=b<=c<=1 đều thỏa mãn biểu thức đó
t cũng ko biết c/m số dưới dạng biến thế nào
Ta có: a + b + c = 0.
=> a = - b - c
b = -a - c
c = - a- b.
Nên ta có:
ab + bc + ca = (-b-c)b + (-a-c)c + (-a-b)a
= -b^2 - bc - ca -c^2 - a^2 - ab
= -( a^2 + b^2 + c^2)- (ab + bc + ca)
=> 2(ab + bc + ca) = -(a^2 + b^2 +c^2)
Mà -(a^2 + b^2 + c^2) bé hơn hoặc bằng 0 (do a^2 + b^2 + c^2 lớn hơn hoặc bằng 0)
=> 2(ab + bc + ca ) bé hơn hoặc bằng 0.
=> ab + bc + ca bé hơn hoặc bằng 0.
Vậy ab + bc + ca bé hơn hoặc bằng 0.
Ta có:
\(\Rightarrow a\left(a+b+c\right)=b\left(a+b+c\right)=c\left(a+b+c\right)=0\)
\(\Rightarrow a^2+ab+ac=ab+b^2+bc=ca+cb+c^2=0\)
\(\Rightarrow\left(ab+bc+ca\right)+\left(a^2+b^2+c^2\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow ab+bc+ca\le0^{đpcm}\)
Bài này lớp 7 là khó đấy \(0\le a\le b\le c\le1\Rightarrow\hept{\begin{cases}1-a\ge0\\1-b\ge0\end{cases}\Rightarrow\left(1-a\right)\left(1-b\right)\ge0}\)
\(\Leftrightarrow ab-a-b+1\ge0\Leftrightarrow ab+1\ge a+b\)(*)
Vì \(0\le a\le b\le c\le1\) nên \(\hept{\begin{cases}ab\ge0\\1\ge c\end{cases}\Rightarrow ab+1\ge c}\)Kết hợp với (*) ta được :
\(2\left(ab+1\right)\ge a+b+c\) \(\Leftrightarrow\frac{1}{ab+1}\le\frac{2}{a+b+c}\Rightarrow\frac{c}{ab+1}\le\frac{2}{a+b+c}\)(1)
Chứng minh tương tự \(\hept{\begin{cases}\frac{a}{bc+1}\le\frac{2a}{a+b+c}\text{ }\left(2\right)\\\frac{b}{ac+1}\le\frac{2b}{a+b+c}\text{ }\left(3\right)\end{cases}}\)
Cộng vế với vế của (1);(2);(3) ta được :
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)(đpcm)