K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://i.imgur.com/cz0ro34.jpg

Bài tương tự trên HOC24 nhiều lắm

3 tháng 2 2018

muộn rồi để lúc khác tôi làm cho

4 tháng 2 2018

Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\Leftrightarrow1\left(1-b\right)-a\left(1-b\right)\ge0\)
\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)

Tiếp tục chứng minh ta có: \(\left\{{}\begin{matrix}1\ge c\\0\le a\le b\Leftrightarrow ab\ge0\end{matrix}\right.\)

cộng theo vế: \(1+ab+1+ab\ge a+b+c+0\)

\(\Rightarrow2\left(1+ab\right)\ge a+b+c\)

Ta có: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\) (1)

chứng minh tương tự suy ra đpcm

13 tháng 3 2017

Vào đây đi:

https://hoc24.vn/hoi-dap/question/32718.html

13 tháng 3 2017

t vào r`, không hiểu...

24 tháng 10 2019

P/s: Bạn nào đang cần thì tham khảo bài này nhé, cô mình chữa rồi.

Bổ sung ĐK: \(\left\{{}\begin{matrix}a< b+c\\b< a+c\\c< a+b\end{matrix}\right.\)

Có: \(0\le a\le b\le1\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\\ \Rightarrow1-b-a+ab\ge0\\ \Rightarrow ab+1\ge a+b\\ \Rightarrow\frac{c}{ab+1}\le\frac{c}{a+b}\left(\text{vì }c\ge0\right)\)

CMTT ta được \(\frac{a}{bc+1}\le\frac{a}{b+c}\\ \frac{b}{ac+1}\le\frac{b}{a+c}\)

\(\Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\le\frac{a+a}{b+c+a}+\frac{b+b}{a+c+b}+\frac{c+c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2a+2b+2c}{a+b+c}\\ \Rightarrow\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\left(đpcm\right)\)

12 tháng 2 2018

Ta có: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1-a\ge0\\1-b\ge0\end{matrix}\right.\Leftrightarrow\left(1-a\right)\left(1-b\right)\ge0\)

\(\Rightarrow1-b-a+ab\ge0\Leftrightarrow1+ab\ge a+b\)(1)

Tiếp tục chứng minh ta được: \(0\le a\le b\le c\le1\Leftrightarrow\left\{{}\begin{matrix}1\ge c\\ab\ge0\end{matrix}\right.\)(2)

Cộng theo vế pt(1) với pt(2) ta được:

\(1+ab+1+ab\ge a+b+c+0\)

\(\Rightarrow2\left(ab+1\right)\ge a+b+c\)

Nên: \(\dfrac{c}{ab+1}=\dfrac{2c}{2\left(ab+1\right)}\le\dfrac{2c}{a+b+c}\)

Chứng minh tương tự suy ra đpcm

11 tháng 2 2018

Câu hỏi của Phạm Quốc Anh - Toán lớp 7 - Học toán với OnlineMath

4 tháng 3 2018

Câu hỏi của Nguyễn Tiến Đạt - Toán lớp 7 - Học toán với OnlineMath