Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{a^3}{b}+ab+\dfrac{b^3}{c}+bc+\dfrac{c^3}{a}+ca\ge2\sqrt{\dfrac{a^4b}{b}}+2\sqrt{\dfrac{b^4c}{c}}+2\sqrt{\dfrac{c^4a}{a}}=2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
áp dụng AM GM ta có a^3/b+ab>=2a^2
chứng minh tương tự => a^3/b+b^3/c+c^3/a>=2(a^2+b^2+c^2)-(ab+bc+ca)
mà ta có a^2+b^2+c^2>=(ab+bc+ca)
=>a^3/b+b^3/c+c^3/a>= ab+bc+ca
"=" xảy ra khi a=b=c
1. \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)
\(=\left(a+b+c\right)\left[\left(abc\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2+c^2-ac-bc\right)-3ab\left(a+b+c\right)\)
\(\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc+2ab-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
2. \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+b^3+c^3=3abc\)
3.Còn có a + b + c = 0 nữa mà bn.
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-ac-bc=0\end{matrix}\right.\)
+ \(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\ \left(c-a\right)^2=0\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\2a^2+2b^2+2c^2-2ab-2bc-2ca=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
bạn thay vào M giải tiếp nha
Ta có: \(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a^3+b^3\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left[\left(a+b\right)^3+c^3\right]-\left[3ab\left(a+b\right)+3abc\right]=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
Nếu \(a^2+b^2+c^2-ab-bc-ca\)
\(=\frac{1}{2}\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\ge0\left(\forall a,b,c\right)\)
Dấu "=" xảy ra khi: a = b = c
Khi đó: \(M=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\left(1+1\right)^3=8\)
Nếu \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{-abc}{abc}=-1\)
a/
\(a^2+b^2+c^2+29ab+bc+ca=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)
b/ \(a^3+b^3+c^3=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
c/ Không, vì \(a=b=c\ne\) thì \(a^3+b^3+c^3=3a^3=3abc\) vẫn đúng
Cho các số a, b, c thỏa mãn a^3+ b^3+ c^3= 3abc với a, b, c khác 0. Chứng minh a+ b+c = 0 hoặc a=b=c
a3 + b3 + c3 = 3abc
⇒ a3 + b3 + c3 - 3abc = 0
⇒ ( a3 + b3 ) + c3 - 3abc = 0
⇒ ( a + b )3 - 3ab( a + b ) + c3 - 3abc = 0
⇒ [ ( a + b )3 + c3 ] - [ 3ab( a + b ) + 3abc ] = 0
⇒ ( a + b + c )[ ( a + b )2 - ( a + b ).c + c2 ] - 3ab( a + b + c ) = 0
⇒ ( a + b + c )( a2 + b2 + c2 - ab - bc - ac ) = 0
⇒ \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{cases}}\)
+) a2 + b2 + c2 - ab - bc - ac = 0
⇒ 2( a2 + b2 + c2 - ab - bc - ac ) = 2.0
⇒ 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
⇒ ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( a2 - 2ac + c2 ) = 0
⇒ ( a - b )2 + ( b - c )2 + ( a - c )2 = 0
VT ≥ 0 ∀ a,b,c . Dấu "=" xảy ra khi a = b = c
⇒ a + b + c = 0 hoặc a = b = c ( đpcm )
a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
=> a=b=c
CM a + b + c = 0
=> a + b = -c ; b + c = -a ; c+a a = -b
E = \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}\cdot\frac{b+c}{c}\cdot\frac{c+a}{a}=\frac{\left(-a\right)\left(-b\right)\left(-c\right)}{abc}=1\)
Như thế này :
\(a^3+b^3+c^3=3abc\)
=> (a+b)^3 - 3ab(a+b) - 3abc + c^3 = 0
=> ( a+ b +c )^3 - 3(a+b)c(a+b+c) - 3ab(a+b+c) = 0
=> \(\left(a+b+c\right)\left[\left(a+b+c\right)^2-3bc-3ac-3ab\right]=0\)
=> ( a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca ) = 0
=> 1/2 ( a + b + c )(2a^2 + 2b^2 + 2x^2 - 2ab - 2bc - 2 ca ) = 0
=> 1/2 (a+b+c) [ ( a- b)^2 + ( b - c)^2 + (c-a)^2] = 0
Bì ngoặc thứ hai luôn >= 0 => a + b + c = 0
hoặc a = b ; b =c = c=a => a = =b =c
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)\(ab\))
Mà: \(a+b+c=0\)
Vậy: \(A=0.\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(A=0\)
Hk tốt
ta có a+b+c=0
=>a+b=-c
ta có a^3 +b^3+c^3
=(a+b)(a^2-ab+b^2)+c^3
=-c(a^2+b^2-ab)+c^3
=-c[(a+b)^2-2ab-ab]+c^3
= -c[(-c)^2-3ab]+c^3
= (-c)^3+3abc+c^3
=3abc