Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{5a^3-b^3}{ab+3a^2}=\frac{3a^3-b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)
\(=a-\frac{a^2b+b^3}{ab+3a^2}+\frac{2a^3}{ab+3a^2}\)
= \(a-\frac{b\left(a^2+b^2\right)}{a\left(b+3a\right)}+\frac{2a^3}{a\left(b+3a\right)}\) (1)
Áp dụng BĐT AM - GM ( x2 + y2 \(\ge2xy\)) ta có:
(1) \(\le a-\frac{2ab^2}{a\left(b+3a\right)}+\frac{2a^2}{b+3a}\) = \(a-\frac{2b^2}{b+3a}+\frac{2a^2}{b+3a}\) (2)
Tương tự ta cũng có:
\(\frac{5b^3-c^3}{bc+3b^2}\le b-\frac{2c^2}{c+3b}+\frac{2b^2}{c+3b}\left(3\right)\)
\(\frac{5c^3-a^2}{ca+3c^2}\)\(\le c-\frac{2a^2}{a+3c}+\frac{2c^2}{a+3c}\)(4)
Từ (2), (3), (4) \(\Rightarrow\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le a+b+c+\left(\frac{2a^2}{a+3c}-\frac{2a^2}{a+3c}\right)+\left(\frac{2b^2}{b+3c}-\frac{2b^2}{b+3c}\right)+\left(\frac{2c^2}{c+3a}-\frac{2c^2}{c+3a}\right)=a+b+c\le2018\)
Vậy \(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ca+3c^2}\le2018\)
\(VT=\frac{\left(5a+c\right)^2}{\left(b+c\right)\left(5a+c\right)}+\frac{\left(6b\right)^2}{6b\left(a+c\right)}+\frac{\left(5c+a\right)^2}{\left(a+b\right)\left(5c+a\right)}\)
\(VT\ge\frac{\left(5a+c+6b+5c+a\right)^2}{5ab+5ac+bc+c^2+6ab+6bc+5ac+5bc+a^2+ab}\)
\(VT\ge\frac{36\left(a+b+c\right)^2}{a^2+c^2+12ab+12bc+10ac}\ge\frac{36\left(a+b+c\right)^2}{a^2+c^2+a^2+b^2+b^2+c^2+10ab+10bc+10ac}\)
\(VT\ge\frac{36\left(a+b+c\right)^2}{2\left(a+b+c\right)^2+6\left(ab+bc+ca\right)}\ge\frac{36\left(a+b+c\right)^2}{2\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=9\)
Dấu "=" xảy ra khi \(a=b=c\)
Ta co:
\(\text{ }\Sigma_{cyc}\frac{1}{a+7b}=\Sigma_{cyc}\frac{1}{a+b+b+...+b}\le\Sigma_{cyc}\frac{1}{64}\left(\frac{1}{a}+\frac{7}{b}\right)=\frac{1}{2}\)
\(a+b+c=\frac{1}{abc}\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(P=\sum\frac{1}{\sqrt{1+\frac{1}{x^2}}}=\sum\frac{x}{\sqrt{1+x^2}}=\sum\frac{x}{\sqrt{x^2+xy+yz+zx}}=\sum\frac{x}{\sqrt{\left(x+y\right)\left(z+x\right)}}\)
\(\Rightarrow P\le\frac{1}{2}\sum\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}\) hay \(a=b=c=\sqrt{3}\)
Em nghĩ cần thêm đk a, b, c là các số thực dương
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\) thì x + y + z = 3; x > 0,y>0,z>0
BĐT \(\Leftrightarrow\sqrt{\frac{5}{x}+4}+\sqrt{\frac{5}{y}+4}+\sqrt{\frac{5}{z}+4}\le3\sqrt{3\left(\frac{xy+yz+zx}{xyz}\right)}\)
\(\Leftrightarrow\sqrt{5yz+4xyz}+\sqrt{5zx+4xyz}+\sqrt{5z+4xyz}\le3\sqrt{3\left(xy+yz+zx\right)}\)(*)
\(VT\le\sqrt{5\left(xy+yz+zx\right)+12xyz+2\Sigma_{cyc}\sqrt{\left(5yz+4xyz\right)\left(5zx+4xyz\right)}}\)
\(\le\sqrt{15\left(xy+yz+zx\right)+36xyz}\)(áp dụng BĐT AM-GM)
Chú ý rằng: \(xyz\le\frac{\left(xy+yz+zx\right)\left(x+y+z\right)}{9}\)
Từ đó \(VT\le\sqrt{15\left(xy+yz+zx\right)+4\left(xy+yz+zx\right)\left(x+y+z\right)}\)
\(=3\sqrt{3\left(xy+yz+zx\right)}=VP_{\text{(*)}}\)
Ta có đpcm.
Đẳng thức xảy ra khi a = b = c = 1
Is that true?
\(\Sigma\frac{b+1}{8-\sqrt{a}}\le\Sigma\frac{2\left(b+1\right)}{15-a}=\Sigma\frac{2\left(a+2b+c\right)}{4a+5b+5c}\)(AM-gm)
Đặt \(\left\{\begin{matrix}x=4a+5b+5c\\y=4b+5a+5c\\z=4c+5a+5b\end{matrix}\right.\)suy ra...
\(\Leftrightarrow\frac{5a}{5a+b}+\frac{5b}{5b+c}+\frac{5c}{5c+a}\le\frac{5}{2}\)
\(\Leftrightarrow\frac{b}{5a+b}+\frac{c}{5b+c}+\frac{a}{5c+a}\ge\frac{1}{2}\)
Ta có \(VT=\frac{a^2}{a^2+5ac}+\frac{b^2}{b^2+5ab}+\frac{c^2}{c^2+5bc}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)^2}=\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c\)