Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a;b;c là 3 cạnh của 1 tam giác nên: \(\left\{{}\begin{matrix}a+b-c>0\\a+c-b>0\\b+c-a>0\end{matrix}\right.\)
BĐT đã cho tương đương:
\(\dfrac{a^2+2bc}{b^2+c^2}-1+\dfrac{b^2+2ac}{a^2+c^2}-1+\dfrac{c^2+2ab}{a^2+b^2}-1>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b^2-2bc+c^2\right)}{b^2+c^2}+\dfrac{b^2-\left(a^2-2ac+c^2\right)}{a^2+c^2}+\dfrac{c^2-\left(a^2-2ab+b^2\right)}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{a^2-\left(b-c\right)^2}{b^2+c^2}+\dfrac{b^2-\left(a-c\right)^2}{a^2+c^2}+\dfrac{c^2-\left(a-b\right)^2}{a^2+b^2}>0\)
\(\Leftrightarrow\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{b^2+c^2}+\dfrac{\left(a+b-c\right)\left(b+c-a\right)}{a^2+c^2}+\dfrac{\left(b+c-a\right)\left(a+c-b\right)}{a^2+b^2}>0\) (luôn đúng)
Vậy BĐT đã cho đúng
Lời giải:
Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{x+z}{2}\\ b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\end{matrix}\right.\) $(x,y,z>0$ do $a,b,c$ là 3 cạnh tam giác.
Khi đó:
\(\text{VT}=\frac{(a+b)^2-c^2}{2ab}+\frac{(b+c)^2-a^2}{2bc}+\frac{(c+a)^2-b^2}{2ca}-3\)
\(=(a+b+c)\left(\frac{a+b-c}{2ab}+\frac{b+c-a}{2bc}+\frac{c+a-b}{2ca}\right)-3\)
\(=2(x+y+z)\left(\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\right)-3\)
\(=4(x+y+z).\frac{xy+yz+xz}{(x+y)(y+z)(x+z)}-3\)
\(=4.\frac{xy(x+y)+yz(y+z)+xz(x+z)+3xyz}{(x+y)(y+z)(x+z)}-3=4.\frac{(x+y)(y+z)(x+z)+xyz}{(x+y)(y+z)(x+z)}-3\)
\(>4.\frac{(x+y)(y+z)(x+z)}{(x+y)(y+z)(x+z)}-3=4-3=1\)
Ta có đpcm.
\(\)
Lời giải:
Đặt \(\left\{\begin{matrix} a+b-c=x\\ b+c-a=y\\ c+a-b=z\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{x+z}{2}\\ b=\frac{x+y}{2}\\ c=\frac{y+z}{2}\end{matrix}\right.\) $(x,y,z>0$ do $a,b,c$ là 3 cạnh tam giác.
Khi đó:
\(\text{VT}=\frac{(a+b)^2-c^2}{2ab}+\frac{(b+c)^2-a^2}{2bc}+\frac{(c+a)^2-b^2}{2ca}-3\)
\(=(a+b+c)\left(\frac{a+b-c}{2ab}+\frac{b+c-a}{2bc}+\frac{c+a-b}{2ca}\right)-3\)
\(=2(x+y+z)\left(\frac{x}{(x+y)(x+z)}+\frac{y}{(y+x)(y+z)}+\frac{z}{(z+x)(z+y)}\right)-3\)
\(=4(x+y+z).\frac{xy+yz+xz}{(x+y)(y+z)(x+z)}-3\)
\(=4.\frac{xy(x+y)+yz(y+z)+xz(x+z)+3xyz}{(x+y)(y+z)(x+z)}-3=4.\frac{(x+y)(y+z)(x+z)+xyz}{(x+y)(y+z)(x+z)}-3\)
\(>4.\frac{(x+y)(y+z)(x+z)}{(x+y)(y+z)(x+z)}-3=4-3=1\)
Ta có đpcm.
\(\)
coi lại dấu " = " xảy ra khi nào dùm t ... , bài lm của m hay mak kl như cái qq ...
Bài 1:a,b,c ba cạnh tam giác => a,b,c dương
\(\left\{{}\begin{matrix}a+c>b\\a+b>c\\b+c>a\end{matrix}\right.\) ta có: \(\dfrac{x}{y}< \dfrac{x+p}{y+p}\forall_{x,y,p>0\&x< y}\)
\(VT=\dfrac{a}{a+b}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a+c}{a+b}+\dfrac{b}{c+a}< \dfrac{a+c+c}{a+b+c}+\dfrac{b+b}{a+b+c}=\)
\(=\dfrac{a+b+c+b+c}{a+b+c}< \dfrac{\left(a+b+c\right)+\left(A+b+c\right)}{a+b+c}< \dfrac{2\left(b+a+c\right)}{a+b+c}=2=VP\)
p/s: đề sao làm vậy:
mình nghi đề phải thế này: \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\) cách làm đơn giản hơn
\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
\(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
<=>b(c+d)(d+a)+d(a+b)(b+c)=0 (vì c≠a)
<=>abc-acd+bd2-b2d=0
<=> (b-d)(ac-bd)=0 <=> ac - bd =0 (vì b≠d) <=> ac = bd
Vậy abcd =(ac)(bd)=(ac)2
Cho đẳng thức.... Miny.vn - Cộng đồng hỗ trợ học tập
do a,b,c là độ dài các cạnh nên bài trong link ko xảy ra dấu "=" tức là bài đó >1 chính là bài này