K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2019

Lời giải :

Đặt \(\hept{\begin{cases}a+2b+c=x\\a+b+2c=y\\a+b+3c=z\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=-x+5y-3z\\b=x-2y+z\\c=z-y\end{cases}}\)

Thay vào P ta được :

\(P=\frac{-x+5y-3z+3z-3y}{x}+\frac{4x-8y+4z}{y}+\frac{-8z+8y}{z}\)

\(P=-1+\frac{2y}{x}+\frac{4x}{y}-8+\frac{4z}{y}-8+\frac{8y}{z}\)

\(P=-17+\left(\frac{2y}{x}+\frac{4x}{y}\right)+\left(\frac{4z}{y}+\frac{8y}{z}\right)\)

Áp dụng BĐT Cô-si :

\(P\ge-17+2\sqrt{\frac{2y\cdot4x}{x\cdot y}}+2\sqrt{\frac{4z\cdot8y}{x\cdot z}}\)

\(=-17+2\sqrt{8}+2\sqrt{32}\)

\(=-17+12\sqrt{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{2y}{x}=\frac{4x}{y}\\\frac{4z}{y}=\frac{8y}{z}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2x^2=y^2\\z^2=2y^2\end{cases}}\)

Thay a,b,c vào tìm ra dấu "=" nhé. Khá dài và phức tạp đấy.

25 tháng 8 2019

Ai ti-ck sai ra đây nói chuyện nào ?

22 tháng 5 2020

Đặt \(x=a+b+2c;y=2a+b+c;z=a+b+3c\left(x,y,z>0\right)\)

Từ đó tính được: \(\hept{\begin{cases}a=z+y-2x\\b=5x-y-3z\\c=z-x\end{cases}}\)

Lúc đó \(A=\frac{4\left(z+y-2x\right)}{x}+\frac{\left(5x-y-3z\right)+3\left(z-x\right)}{y}-\frac{8\left(z-x\right)}{z}\)

\(=\frac{4z+4y}{x}-8+\frac{2x}{y}-1+\frac{8x}{z}-8\)

\(=\left(\frac{4y}{x}+\frac{2x}{y}\right)+\left(\frac{4z}{x}+\frac{8x}{z}\right)-17\)

\(\ge2\sqrt{\frac{4y}{x}.\frac{2x}{y}}+2\sqrt{\frac{4z}{x}.\frac{8x}{z}}-17=12\sqrt{2}-17\)(Theo BĐT Cô - si cho 2 số dương)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{4y}{x}=\frac{2x}{y}\\\frac{4z}{x}=\frac{8x}{z}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\sqrt{2}\\z=x\sqrt{2}=2y\end{cases}}\Leftrightarrow\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}\)

Đặt \(\frac{z}{2}=\frac{x}{\sqrt{2}}=\frac{y}{1}=k\left(k>0\right)\)thì \(\hept{\begin{cases}z=2k\\x=\sqrt{2}k\\y=k\end{cases}}\). Lúc đó \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\)

Vậy \(MinA=12\sqrt{2}-17\), đạt được khi \(\hept{\begin{cases}a=\left(3-2\sqrt{2}\right)k\\b=\left(5\sqrt{2}-7\right)k\\c=\left(2-\sqrt{2}\right)k\end{cases}}\left(k>0\right)\)

15 tháng 3 2020

Đề quá xấu! 

Đặt \(x=12\sqrt{2}-17\). Chứng minh \(A\ge x\). Tìm điểm rơi giúp em cái đã rồi em suy nghĩ tiếp chứ tình hình này là thua rồi:))

15 tháng 3 2020

Cho a, b, c là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{a+3c}{a+2b+c}+\frac{4b}{a+b+2c}-\frac{8c}{a+b+3c}\)

14 tháng 3 2019

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

8 tháng 7 2016

bài 2 thì bạn áp dụng bdt cô si với lựa chọn điểm rơi  hoặc bdt holder  ( nó giống kiểu bunhia ngược ) . bai 1 thi ap dung cai nay \(\frac{1}{x}+\frac{1}{y}>=\frac{1}{x+y}\)  câu 1 khó hơn nhưng bạn biết lựa chọn điểm rơi với áp dụng bdt phụ kia là ok .

9 tháng 7 2016

Bài 1:Đặt VT=A

Dùng BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\Rightarrow\frac{1}{x+y+z}\le\frac{1}{9}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)x,y,z>0\)

Áp dụng vào bài toán trên với x=a+c;y=b+a;z=2b ta có:

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

Tương tự với 2 cái còn lại

\(A\le\frac{1}{9}\left(\frac{bc+ac}{a+b}+\frac{bc+ab}{a+c}+\frac{ab+ac}{b+c}\right)+\frac{1}{18}\left(a+b+c\right)\)

\(\Rightarrow A\le\frac{1}{9}\left(a+b+c\right)+\frac{1}{18}\left(a+b+c\right)=\frac{a+b+c}{6}\)

Đẳng thức xảy ra khi a=b=c 

Bài 2:

Biến đổi BPT \(4\left(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\right)\ge3\)

\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)

Dự đoán điểm rơi xảy ra khi a=b=c=1

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)

Tương tự suy ra

\(VT\ge\frac{2\left(a+b+c\right)-3}{4}\ge\frac{2\cdot3\sqrt{abc}-3}{4}=\frac{3}{4}\)

NV
21 tháng 3 2022

Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)

\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)

Ta có:

\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)

Tương tự:

\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)

Cộng vế:

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)

\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)

\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)