Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt ab = x, bc = y, ca = z (x, y, z ≠ 0 thỏa mãn x^3 + y^3 + z^3 = 3xyz)
⇔ (x+y)^3 − 3xy(x + y) + z^3 = 3xyz <=> (x+y)^3 − 3xy(x + y) + z^3 = 3xyz
⇔ (x + y)^3 + z^3 − 3xy(x + y+ z) = 0 ⇔ (x + y)^3 + z^3 − 3xy(x + y + z) = 0
⇔ (x + y + z)[(x + y)^2 − z (x + y) + z^2] − 3xy(x + y + z) = 0 ⇔ (x + y + z)[(x + y)^2 − z(x + y) + z2] − 3xy(x + y + z) = 0
⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0 ⇔ (x + y + z)(x^2 + y^2 + z^2 − xy − yz − xz) = 0
<=> x + y + z = 0 (1) và x^2 + y^2 + z^2 − xy − yz − xz = 0 (2)
Với (1): ⇔ ab + bc + ac = 0 ⇔ ab + bc + ac = 0
P = (1 + a/b)(1 + b/c)(1 + c/a) = (a + b)(b + c)(c + a)/abc=(ab + bc + ac)(a + b + c) − abc/abc = 0 − abc/abc = −1
Với (2) ⇔ (x − y)^2 + (y − z)^2 + (z − x)^2/2 = 0
⇔ (x − y)^2 + (y − z)^2 + (z − x)^2 = 0
Ta thấy (x − y)^2; (y − z)^2; (z − x)^2 ≥ 0 ∀x, y, z nên để tổng của chúng bằng 0 thì:
(x − y)^2 = (y − z)^2 = (z − x)^2 = 0 ⇒ x = y = z
⇔ ab = bc = ac ⇔ a=b=c (do a, b, c ≠ 0)
⇒ A = (1 + 1)(1 + 1)(1 + 1) = 8
Vậy...........
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{1}{3}.\) (T/c dãy tỷ số bằng nhau)
=> \(\frac{a}{3b}=\frac{1}{3}\Rightarrow\frac{a}{b}=1\Rightarrow a=b\)
Làm tương tự sẽ rút ra a=b=c=d
Bài này mk lm ở lớp hc thêm nhưng chưa đc cô chữa nên cx ko có chắc
ADTC dãy tỉ số bằng nhau ta có
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3a+3b+3c+3d}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{1}{3}.3b=b\left(1\right)\\b=\frac{1}{3}.3c=c\left(2\right)\\c=\frac{1}{3}.3d=d\left(3\right)\end{cases}}\)
Từ (1);(2);(3) \(\Rightarrowđpcm\)
B1:
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{1}{3}\)
=> a/3b = 1/3 => a = b (1)
b/3c = 1/3 => b = c (2)
c/3d = 1/3 => c = d (3)
d/3a = 1/3 => d = a (4)
Từ (1),(2),(3),(4) => a = b = c = d
B2:
\(a^2=bc\Rightarrow\frac{a}{c}=\frac{b}{a}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
\(\Rightarrow\frac{a+b}{c+a}=\frac{a-b}{c-a}\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
1) Ta có : Đặt M = 3x + 1 + 3x + 2 + ... + 3x + 100
= 3x(3 + 32 + ... + 3100)
= 3x[(3 + 32 + 33 + 34) + (35 + 36 + 37 + 38) + ... + (397 398 + 399 + 3100)]
= 3x[(3 + 32 + 33 + 34) + 34.(3 + 32 + 33 + 34) + ... + 396.(3 + 32 + 33 + 34)]
= 3x(120 + 34.120 + .... + 396.120)
= 3x.120.(1 + 34 + .... + 396)
=> \(M⋮120\)(ĐPCM)
2) Ta có \(\frac{3a+b+c}{a}=\frac{a+3b+c}{b}=\frac{a+b+3c}{c}\)
\(\Rightarrow\frac{3a+b+c}{a}-2=\frac{a+3b+c}{b}-2=\frac{a+b+3c}{c}-2\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
Nếu a + b + c = 0
=> a + b = - c
b + c = -a
c + a = -b
Khi đó P = \(\frac{-c}{c}+\frac{-a}{a}+\frac{-b}{b}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Nếu a + b + c \(\ne\)0
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)
Khi đó P = \(\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
Vậy nếu a + b + c = 0 thì P = -3
nếu a + b + c \(\ne\)0 thì P = 6
Ta có :
\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)
\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...\)\(+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)
\(=3^x\left(3+3^2+3^3+3^4\right)+...+3^{x+96}\left(3+3^2+3^3+3^4\right)\)
\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)
\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)
Vì \(120⋮120\)
\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)
\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\inℕ\right)\left(đpcm\right)\)