K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2015

Nho tick cho minh nha

 

10 tháng 9 2015

Sau khi phân tích thành nhân tử ta có:

2a-3b+2b-2c+2c-3a

= -a-b<0

=> đẳng thức ko có nghĩa

28 tháng 4 2020

Ta có : 

\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)

\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)

\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)

Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)

Lê Thị Thục HiềnTrần Thanh PhươngVũ Minh Tuấn?Amanda?

giup voi

14 tháng 5 2021

2M\(\le\)a(9b+4a+5b)+b(9a+4b+5a)  (AM-GM)

     =4(a2+b2)+28ab\(\le\)4(a2+b2)+14(a2+b2)  (AM-GM)

                                =36 (do a2+b2=2)

=> M \(\le\)18

 Dấu bằng có <=> a=b=1

14 tháng 5 2021

tại sao lai phá căn đc

NV
19 tháng 11 2018

Bạn viết đề sai, nếu VT là \(\sum\dfrac{1}{\sqrt{7a^2-12ab+b^2}}\) thì vế phải là \(\dfrac{3}{\sqrt{2}}\)

VT là \(\sum\dfrac{1}{\sqrt{7a^2-13ab+7b^2}}\) thì VP mới là 3 được

Từ \(ab+bc+ac=3abc\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\) (chia 2 vế cho abc)

Ta có \(\dfrac{1}{\sqrt{7\left(a^2+b^2\right)-12ab}}\le\dfrac{1}{\sqrt{14ab-12ab}}=\dfrac{1}{\sqrt{2ab}}\)

Tương tự\(\dfrac{1}{\sqrt{7b^2-12bc+7c^2}}\le\dfrac{1}{\sqrt{2bc}}\) ; \(\dfrac{1}{\sqrt{7a^2-12ac+7c^2}}\le\dfrac{1}{\sqrt{2ac}}\)

Cộng vế với vế:

\(VT\le\dfrac{1}{\sqrt{2}}\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\le\dfrac{1}{\sqrt{2}}\sqrt{\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}=\dfrac{3}{\sqrt{2}}\)

Dấu "=" xảy ra khi a=b=c=1

10 tháng 10 2017

trước hết bạn hãy bấm nghiệm của chúng trên máy tính rồi tìm ĐKXĐ nhé ! 

10 tháng 10 2017

b = 1 =>b2=b 

=> A = \(\sqrt{a^2+4ab+4b^2}-\sqrt{4a^2-12ab+9b^2}\)

        = \(\sqrt{\left(a+2b\right)^2}-\sqrt{\left(2a-3b\right)^2}\)

        = \(\sqrt{\left(\sqrt{2}+2\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)

        = \(\sqrt{2}+2-3+2\sqrt{2}\)

        = \(3\sqrt{2}-1\) 

28 tháng 8 2019

A=\(\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)

=\(\sqrt{\left(a+2b^2\right)^2}-\sqrt{\left(2a-3b^2\right)^2}\)

=\(\left|a+2b^2\right|-\left|2a-3b^2\right|\)

Thay a=\(\sqrt{2}\),b=1 vào A đã rút gọn có:

A= \(\left|\sqrt{2}+2.1^2\right|-\left|2\sqrt{2}-3.1^2\right|=\sqrt{2}+2-\left|2\sqrt{2}-3\right|\)

=\(\sqrt{2}+2-3+2\sqrt{2}=3\sqrt{2}-1\)

Vậy A=\(3\sqrt{2}-1\)

20 tháng 7 2016

Đăt  \(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge8c\)  \(\left(\alpha\right)\)

Mình xin đề xuất một biện pháp khá ngắn gọn. Hy vọng bạn sẽ tìm cách khác.

Ta có: 

\(a^2-ab+b^2=\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

nên   \(\sqrt{a^2-ab+b^2}\ge\sqrt{\frac{\left(a+b\right)^2}{4}}=\frac{a+b}{2}\)

\(\Rightarrow\)  \(2\sqrt{a^2-ab+b^2}\ge a+b\)  \(\left(1\right)\)

Mặt khác, ta cũng có:

\(a^2-2ca+4c^2=\frac{3}{4}\left(a-2c\right)^2+\frac{1}{4}\left(a+2c\right)^2\ge\frac{1}{4}\left(a+2c\right)^2\)

nên  \(\sqrt{a^2-2ca+4c^2}\ge\frac{a+2c}{2}\)  \(\left(2\right)\)

Khi đó, ta cũng có thể thiết lập được bất đẳng thức tương tự như trên:

\(\sqrt{b^2-2bc+4c^2}\ge\frac{b+2c}{2}\)  \(\left(3\right)\)

Cộng từng vế  các bđt  \(\left(1\right);\)  \(\left(2\right);\)  và  \(\left(3\right)\)  ta được:

\(2\sqrt{a^2-ab+b^2}+\sqrt{a^2-2ca+4c^2}+\sqrt{b^2-2bc+4c^2}\ge a+b+\frac{a+2c}{2}+\frac{b+2c}{2}\)

Hay nói cách khác,  \(VT\left(\alpha\right)\ge4c+\frac{a+b}{2}+\frac{4c}{2}=4c+2c+2c=8x=VP\left(\alpha\right)\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}a=b\\a=2c\\b=2c\end{cases}}\)  \(\Leftrightarrow\)  \(a=b=2c\)

26 tháng 7 2016

thanks