Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\sqrt{a^2+4ab^2+4b^4}-\sqrt{4a^2-12ab^2+9b^4}\)
=\(\sqrt{\left(a+2b^2\right)^2}-\sqrt{\left(2a-3b^2\right)^2}\)
=\(\left|a+2b^2\right|-\left|2a-3b^2\right|\)
Thay a=\(\sqrt{2}\),b=1 vào A đã rút gọn có:
A= \(\left|\sqrt{2}+2.1^2\right|-\left|2\sqrt{2}-3.1^2\right|=\sqrt{2}+2-\left|2\sqrt{2}-3\right|\)
=\(\sqrt{2}+2-3+2\sqrt{2}=3\sqrt{2}-1\)
Vậy A=\(3\sqrt{2}-1\)
Giải
A = \(\sqrt{\left(a+2b^2\right)^2}-\sqrt{\left(2a-3b^2\right)^2}\)
= \(\left|a+2b^2\right|-\left|2a-3b^2\right|\)
Với a = \(\sqrt{2}\); b = 1 thì
A = \(\left|\sqrt{2}+2\right|-\left|2\sqrt{2}-3\right|=\sqrt{2}+2+2\sqrt{2}-3=3\sqrt{2}-1\)
Ta có :
\(A=\sqrt{\left(2a-3b\right)^2}+2\sqrt{\left(b-c\right)^2}+\sqrt{\left(2c-3a\right)^2}\)
\(A=\left|2a-3b\right|+2\left|b-c\right|+\left|2c-3a\right|\)
\(\ge3b-2a+2\left(c-b\right)+\left(3a-2c\right)=a+b\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3b-2a,c-b,3a-2c\ge0\\a=b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b=1\\1\le c\le\frac{3}{2}\end{cases}}}\)
Vậy Min A = 2 khi a = b = 1 và c \(\in\)\(\left[1,\frac{3}{2}\right]\)
a: Khi x=16 thì \(A=\dfrac{4+1}{4-1}=\dfrac{5}{3}\)
b: \(P=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{x-4}=\dfrac{x+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\)
Để P lớn nhất thì căn x-2=1
=>căn x=3
=>x=9
a: ĐKXĐ: \(\left\{{}\begin{matrix}a>0\\a\ne4\end{matrix}\right.\)
\(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-2}+\dfrac{\sqrt{a}}{\sqrt{a}-2}\right)\cdot\dfrac{a-4}{\sqrt{4a}}\)
\(=\dfrac{2\sqrt{a}}{\sqrt{a}-2}\cdot\dfrac{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}{2a}\)
\(=\sqrt{a}+2\)
b: A-2<0
=>\(\sqrt{a}+2-2< 0\)
=>\(\sqrt{a}< 0\)
=>\(a\in\varnothing\)
c: Bạn ghi đầy đủ đề đi bạn
a, Khi x = 2, ta được:
\(A=\dfrac{4}{2\sqrt{2}-2}=2+2\sqrt{2}\)
b, \(B=\dfrac{\sqrt{x}-4}{x-2\sqrt{x}}+\dfrac{3}{\sqrt{x}-2}\\ \Rightarrow B=\dfrac{\sqrt{x}-4+3\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\\ \Rightarrow B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(P=B:A=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{4}=-\left(\sqrt{x}-1\right)=1-\sqrt{x}\) (đpcm)
a: Khi x=9 thì A=(9-2)/(3+2)=7/5
b: \(B=\dfrac{x-\sqrt{x}+2\sqrt{x}+2-4}{x-1}=\dfrac{x+\sqrt{x}-2}{x-1}\)
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)
c: P=A*B
\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\cdot\dfrac{x-2}{\sqrt{x}+2}=\dfrac{x-2}{\sqrt{x}+1}\)
P=7/4
=>(x-2)/(căn x+1)=7/4
=>4x-8=7căn 7+7
=>4x-7căn x-15=0
=>căn x=3(nhận) hoặc căn x=-5/4(loại)
=>x=9
trước hết bạn hãy bấm nghiệm của chúng trên máy tính rồi tìm ĐKXĐ nhé !
b = 1 =>b2=b
=> A = \(\sqrt{a^2+4ab+4b^2}-\sqrt{4a^2-12ab+9b^2}\)
= \(\sqrt{\left(a+2b\right)^2}-\sqrt{\left(2a-3b\right)^2}\)
= \(\sqrt{\left(\sqrt{2}+2\right)^2}-\sqrt{\left(2\sqrt{2}-3\right)^2}\)
= \(\sqrt{2}+2-3+2\sqrt{2}\)
= \(3\sqrt{2}-1\)