K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

Từ \(a^2-b=b^2-c\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=b-c\)

\(\Leftrightarrow a+b=\frac{b-c}{a-b}\)

\(\Rightarrow a+b+1=\frac{b-c}{a-b}+1=\frac{a-c}{a-b}\)

Tương tự ta có:

\(\hept{\begin{cases}b+c+1=\frac{b-a}{b-c}\\c+a+1=\frac{c-b}{c-a}\end{cases}}\)

\(\Rightarrow\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)=\frac{a-c}{a-b}.\frac{b-a}{b-c}.\frac{c-b}{c-a}=-1\)

29 tháng 7 2017

Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2\)

\(\Leftrightarrow ab+bc+ca=0\)

Ta lại có:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\)

\(=\frac{a^2}{a^2-ab+bc-ca}+\frac{b^2}{b^2-ab-bc+ca}+\frac{c^2}{c^2+ab-bc-ca}\)

\(=\frac{a^2}{\left(b-a\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(c-b\right)}+\frac{c^2}{\left(a-c\right)\left(b-c\right)}\)

\(=-\left(\frac{a^2}{\left(a-b\right)\left(c-a\right)}+\frac{b^2}{\left(a-b\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(b-c\right)}\right)\)

\(=-\left(\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\right)\)

\(=-\frac{\left(a-b\right)\left(c-b\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)

19 tháng 12 2022

Ai có thể giải thích cho mình đoạn a^2/(a^2-ab+bc-ca) đc ko mình cảm ơn

5 tháng 9 2017

đặt x=a-b;y=b-c;z=c-a

ta có x+y+z=0

nên ta có ĐPCM 

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

<=> \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)\)

<=> \(2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=0\)

<=> \(\frac{z}{xyz}+\frac{y}{xyz}+\frac{x}{xyz}=0\)

<=> \(\frac{x+y+z}{xyz}=0\) (luôn đúng )

31 tháng 7 2019

https://olm.vn/hoi-dap/detail/48946023107.html              vào trang đó coi rồi

ta có a+b+c=0 => a+b=-c => a^2 +b^2 =c^2-2ab

tương tự a^2 + c^2 =b^2-2ac

               b^2 + c^2 =a^2-2bc

thế cào A= -1/2ab + -1/2ac + -1/2bc = -(c+a+b)/2abc=0 (vì a+b+c=0 )

31 tháng 7 2019

  ta có:a^3+b^3+c^3=3abc 
<=>(a+b)^3+c^3-3ab(a+b)-3abc=0 
<=>(a+b+c)[(a+b)^2+(a+b)c+c^2]-3ab(a+b... 
<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0 
<=>1/2(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]... 
do a,b,c doi mot khac nhau nen PT<=>a+b+c=0(DPCM)

lộn nha không phải cái trang đó đâu cái này này 

2 tháng 10 2017

từ đề bài \(\Rightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=\frac{-b\left(a-b\right)-c\left(c-a\right)}{\left(a-b\right)\left(c-a\right)}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)}\)

\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{-ab+b^2-c^2+ac}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\)

Tương tự : \(\hept{\begin{cases}\frac{b}{\left(c-a\right)^2}=\frac{-cb+c^2-a^2+ab}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\\\frac{c}{\left(a-b\right)^2}=\frac{-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}\end{cases}}\)

Cộng vế với vế ta được : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c^2}{\left(a-b\right)^2}\)

\(=\frac{-ab+b^2-c^2+ac-bc+c^2-a^2+ab-ac+a^2-b^2+bc}{\left(a-b\right)\left(c-a\right)\left(b-c\right)}=0\)(đpcm)

2 tháng 10 2017

tôi lớp 7 mà