Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
search mạn bn à. Mà bài này dễ CM mà công thức trong sách giáo khoa lớp 7 hả.......
a)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}\)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{ac}{bd}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)(đpcm)
b)\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{b}+2=\frac{c}{d}+2\Leftrightarrow\frac{a+2b}{b}=\frac{c+2d}{d}\)(đpcm)
\(\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}\)\(\in Z\)=> ad+bc\(⋮\)bd (1). Ta không xét những trường hợp b=d=1
Trong trường hợp b=d thì ta có a+c\(⋮\) b
Ta chứng minh rằng nếu b khác d thì a+c ko chia hết cho b
Xét b>d ( trường hợp b<d chứng minh tương tự)
Giả sử b=d+k ( k >0, k\(\in Z\))
Thay b=d+k vào (1) ta có ad+c(d+k)\(⋮\)bd
=> ad+cd+ck \(⋮\)bd
=>d(a+c)+ck\(⋮\)bd
Tới đây ta thấy rằng nếu a+c\(⋮\)b thì d(a+c)\(⋮bd\)=> ck\(⋮\)bd.
Tuy nhiên (c,d)=1 và k<b nên k ko chia hết cho b, hơn nữa c ko thể chia hết cho b vì nếu thế thì a+c:b=> a:b=> (a,b)=b\(\ne1\)
Do đó ck ko chia hết cho bd, mâu thuẫn => Với b khác d thì a+c ko chia hết cho b
=> ĐPCM
a) Vì \(c \bot a;c \bot b \Rightarrow a//b\) ( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
b) Vì \(a \bot c;a \bot d \Rightarrow c//d\)( hai đường thẳng cùng vuông góc với một đường thẳng thứ ba thì song song với nhau)
c) Vì \(b \bot c;c//d \Rightarrow b \bot d\) ( đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia)
Đề yêu cầu lập thành 1 tỉ lệ thức phải không bạn ??? Mk lm theo hướng đấy nhé !!!
Vì b là trung bình cộng của a và c => \(b=\frac{a+c}{2}\)\(\Rightarrow2b=a+c\)
Ta có \(\frac{1}{c}=\frac{1}{2}\cdot\left(\frac{1}{b}+\frac{1}{d}\right)\Rightarrow\frac{1}{c}=\frac{1}{2}\cdot\frac{b+d}{bd}\Rightarrow\frac{1}{c}=\frac{b+d}{2bd}\Rightarrow2bd=c\left(b+d\right)\)
Thay 2b= a+c , ta sẽ có như sau :
\(\left(a+c\right)\cdot d=c\left(b+d\right)\Rightarrow ad+cd=cb+cd\Rightarrow ad=cb\)
Mà b,d khác 0 (b/c)
Nên ta sẽ có tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\)
Có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad=bc\)
\(\Leftrightarrow ad+ab< bc+ab\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Tương tự: \(ad< bc\)
\(\Leftrightarrow ad+cd< bc+cd\)
\(\Leftrightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(dpcm\right)\)
bn vào link này này: https://olm.vn/hoi-dap/question/94063.html(đừng có k sai cho tui nếu lm sai cứ nói vs tui yk tôi ghét bị kick sai lắm '' cảnh báo trước'' ko thì đừng trách nhá
Lời giải:
Có 4 số a,b,c,d và 3 số dư có thể xảy ra khi chia một số cho 3 là 0,1,2
Do đó áp dụng nguyên lý Dirichlet tồn tại ít nhất \(\left[\frac{4}{3}\right]\)+1=2 số có cùng số dư khi chia cho 3
Không mất tổng quát giả sử đó là a,b⇒a−b⋮3
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮3
Mặt khác:
Trong 4 số a,b,c,d
Giả sử tồn tại hai số có cùng số dư khi chia cho 4 là a,b
⇒a−b⋮4⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Nếu a,b,c,d không có số nào có cùng số dư khi chia cho 4. Khi đó giả sử a,b,c,d có số dư khi chia cho 4 lần lượt là 0,1,2,3
⇒c−a⋮2;d−b⋮2
⇒(b−a)(c−a)(d−a)(d−c)(d−b)(c−b)⋮4
Như vậy, tích đã cho vừa chia hết cho 3 vừa chia hết cho 4. Do đó no cũng chia hết cho 12
Ta có đpcm,