Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như là
a/b=2018a/2018b
Vì a/b<c/d
=>2018a/2018b<c/d
=>2018a+c/2018b+d<c+d
a) Ta có:
a−b=c+d
⇒a−b−c−d=0
⇒2a(a−b−c−d)=0
⇒2a2−2ab−2ac−2ad=0
Do đó:
a2+b2+c2+d2
=a2+b2+c2+d2+2a2−2ab−2ac−2ad
=(a2−2ab+b2)+(a2−2ac+c2)+(a2−2ad+d2)
=(a−b)2+(a−c)2+(a−d)2
Vậy với các số nguyên a, b, c, d thỏa mãn a - b = c + d thì a2 + b2 + c2 + d2 luôn là tổng của ba số chính phương
b) Ta có:
a+b+c+d=0
⇒a+b+c=−d
⇒a2+ab+ac=−da
⇒bc−da=a2+ab+ac+bc
⇒bc−da=a(a+b)+c(a+b)
⇒bc−da=(a+b)(a+c)(1)
Ta lại có:
a+b+c+d=0
⇒a+b+c=−d
⇒ac+bc+c2=−dc
⇒ab−cd=ac+bc+c2+ab
⇒ab−cd=c(a+c)+b(a+c)
⇒ab−cd=(a+c)(b+c)(2)
Ta lại có:
a+b+c+d=0
⇒a+b+c=−d
⇒ab+b2+bc=−db
⇒ca−db=ca+ab+b2+bc
⇒ca−db=a(b+c)+b(b+c)
⇒ca−db=(b+c)(a+b)(3)
Thay (1) , (2) và (3) vào biểu thức ( ab - cd )( bc - da )( ca - db ) ta được:
(ab−cd)(bc−da)(ca−db)
=(a+c)(b+c)(a+b)(a+c)(a+b)(b+c)
=(a+c)2.(b+c)2.(a+b)2
=[(a+c)(b+c)(a+b)]2
Vậy với các số nguyên a, b, c, d thỏa mãn a + b + c + d = 0 thì ( ab - cd )( bc - da )( ca - db ) là số chính phương
\(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow2019ad< 2019bc\)
\(\Leftrightarrow2019ad+cd< 2019bc+cd\)
\(\Leftrightarrow d\left(2019a+c\right)< c\left(2019b+d\right)\)
\(\Leftrightarrow\frac{2019a+c}{2019b+d}< \frac{c}{d}\)
Vì a/b < c/d (Với a,b,c,d thuộc N*)
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc +cd
=> (2018a + c).d < (2018b+d).c
=> 2018a +c / 2018b + d < c/d
Câu hỏi của Thi Bùi - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo câu hỏi ở link này.
còn cái nịttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\Leftrightarrow2018ad< 2018bc\)
\(\Leftrightarrow2018ad+cd< 2018bc+cd\)
\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)
\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)
ta có a/b < c/d
=> ad<bc
=> 2018ad < 2018bc
=> 2018ad + cd < 2018bc + cd
=> ( 2018 a + c ) < c ( 2018 b + d )
=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)