K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2020

Ta có : \(a+b+c=0\)

\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\) ( 1 )

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^3=0\)

\(\Rightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2=0\)

\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)\left[\left(a+b\right)c+c^2\right]=0\)

\(\Rightarrow\left(a+b\right)^3+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)

\(\Rightarrow a^3+b^3+3a^2b+3ab^2+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(ab+ca+cb+c^2\right)=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[\left(ab+ca\right)+\left(cb+c^2\right)\right]=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\) ( 2 ) 

Thay ( 1 ) vào ( 2 ) ta được :  

\(\Rightarrow a^3+b^3+c^3+3.\left(-c\right).\left(-a\right).\left(-b\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

20 tháng 4 2020

\(a^3 + b^3 + c^3 = (a+b)(a^2-ab+b^2) + 3ab(a+b) + c^3 - 3ab(a+b)\)

\(= (a+b)^3 + c^3 - 3ab(a+b)\)

\(= (a+b+c)(a^2 + 2ab + b^2 + ac + bc + c^2) - 3ab(a+b) \)

\(= 0 - 3ab(a+b)\)

Từ \(a+b+c = 0 => a+b = -c\)

Thay vào ta được : \(-3ab(a+b) = -3ab(-c) = 3abc\)

Lẹ hơn xíu ~

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$a+b+c=0\Rightarrow a+b=-c$

Ta có:
$a^3+b^3+c^3=(a+b)^3-3a^2b-3ab^2+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=(-c)^3+3abc+c^3=3abc$ chứ không phải bằng $0$ nhé. 

16 tháng 12

Cc

24 tháng 4 2016

Mình sẽ góp 1 cách (khá độc đáo...vì chẳng ai làm kiểu này cho tốn công), cũng khá nhanh
Có G(x)=x3−(a+b+c)x2+(ab+bc+ca)x−abcG(x)=x3−(a+b+c)x2+(ab+bc+ca)x−abc nhận a, b, c là nghiệm, thay x lần lượt bằng a, b, c xong cộng theo vế:
a3+b3+c3−3abc−...=0=>a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)a3+b3+c3−3abc−...=0=>a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca) 

24 tháng 4 2016

Cách thông dụng nhất:
a3+b3+c3−3abca3+b3+c3−3abc
=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)=a3+3ab(a+b)+b3+c3−3abc−3ab(a+b)
=(a+b)3+c3−3ab(a+b+c)=(a+b)3+c3−3ab(a+b+c)
=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)=(a+b+c)(a2+2ab+b2−ab−ac+c2)−3ab(a+b+c)
=(a+b+c)(a2+b2+c2−ab−bc−ca)=(a+b+c)(a2+b2+c2−ab−bc−ca)
_____
P/s: Mình đang nghĩ thêm cách nữa, nếu được sẽ post lên.

24 tháng 10 2023

1. b3+b= 3                                       

(b3+b)=3                            

b.(3+1)=3

b. 4= 3

b=\(\dfrac{3}{4}\)

a3+a= 3                                       b3

(a3+a)=3                            

a.(3+1)=3

a. 4= 3

a=\(\dfrac{3}{4}\)

2

26 tháng 11

sai

 

27 tháng 12 2018

Dăm ba cái toán 7 

1 ) a ) Ta có f(x) = 2x2 - 3 

     =>          f(-1) = 2. ( -1 ) . 2 - 3 = -7

     b ) Ta có : f ( x ) = 2x2 - 3

   =>          f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1 

2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10 

     Số HS giỏi : 40 : 10 x 3 = 12 

    Số HS khá : 40 : 10 x 5 = 20 

    Số HS trung bình : 40 : 10 x 2 = 8 


4 ) tg là tam giác nha 

1) Xét tgMAB và tgMEC , có : 

góc M1 = góc M2 ( 2 góc đối đỉnh ) 

AM = EM ( gt ) 

MB = MC ( M là trung điểm của BC ) 

Do đó : tgMAB = tg MEC ( c - g - c ) 

2 ) Xét tgACM và tgBEM , có : 

AM = EM ( gt ) 

BM = CM ( M là trung điểm của BC ) 

góc M3 = góc M4 ( 2 góc đối đỉnh ) 

Do đó : tg ACM = tg BEM ( c - g - c ) 

=> góc C1 = góc B1 ( 2 góc tương ứng ) 

=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) ) 

3 ) Xét tgBMI và tgKMC , có : 

BI = CK ( gt ) 

BM = CM ( M là trung điểm của BC ) 

gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC ) 

Do đó : tgBMI = tgKMC ( c - g - c ) 

mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )

=> IK cũng là một đường thẳng và đi qua M 

Do đó : 3 điểm I , M , K thẳng hàng 

29 tháng 12 2018

1 ) a ) Ta có f(x) = 2x2 - 3 

     =>          f(-1) = 2. ( -1 ) . 2 - 3 = -7

     b ) Ta có : f ( x ) = 2x2 - 3

   =>          f ( 1/2 ) = 2 . ( 1/2 ) . 2 - 3 = -1 

2 ) Tổng số tỉ lệ của 3 loại : 3 + 5 + 2 = 10 

     Số HS giỏi : 40 : 10 x 3 = 12 

    Số HS khá : 40 : 10 x 5 = 20 

    Số HS trung bình : 40 : 10 x 2 = 8 

4 ) tg là tam giác nha 

1) Xét tgMAB và tgMEC , có : 

góc M1 = góc M2 ( 2 góc đối đỉnh ) 

AM = EM ( gt ) 

MB = MC ( M là trung điểm của BC ) 

Do đó : tgMAB = tg MEC ( c - g - c ) 

2 ) Xét tgACM và tgBEM , có : 

AM = EM ( gt ) 

BM = CM ( M là trung điểm của BC ) 

góc M3 = góc M4 ( 2 góc đối đỉnh ) 

Do đó : tg ACM = tg BEM ( c - g - c ) 

=> góc C1 = góc B1 ( 2 góc tương ứng ) 

=> AC // BE ( có 2 góc so le trong bằng nhau ( C1 = B1 ) ) 

3 ) Xét tgBMI và tgKMC , có : 

BI = CK ( gt ) 

BM = CM ( M là trung điểm của BC ) 

gócB2 = gócC2 ( 2 góc tương ứng của tgMAB = tgMEC ) 

Do đó : tgBMI = tgKMC ( c - g - c ) 

mà BC là một đường thẳng và đi qua M( M là trung điểm của BC )

=> IK cũng là một đường thẳng và đi qua M 

Do đó : 3 điểm I , M , K thẳng hàng 

10 tháng 7 2017

hình đâu