Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A = (457/1 + 1) + (456/2 + 1) + ... + (2/456 + 1) + (1/457 + 1) - 457
A = 458 + 458/2 + ... + 458/456 + 458/457 - 457
A = 458 (1 + 1/2 + ...+ 1/456 + 1/457) - 457
Xét 1 + 1/2 + ... + 1/456 + 1/457, ta có
1 = 1
1/2 = 1/2
1/3 + 1/4 > 1/4 + 1/4 = 1/2
1/5 + 1/6 + ... + 1/8 > 1/8 + 1/8 + ... + 1/8 = 1/2
1/9 + 1/10 +...+ 1/16 > 1/16 + 1/16 +...+ 1/16 = 1/2
1/17 + 1/18 + ... + 1/32 > 1/32 + ... + 1/32 = 1/2
1/33+ 1/34 + ... + 1/64 > 1/64 + ...+ 1/64 = 1/2
1/65 + 1/66 + ...+ 1/128 > 1/128 + ... + 1/128 = 1/2
1/129 + 1/130 + ... + 1/256 > 1/256 + ...+ 1/256 = 1/2
1/257 + 1/258 + ... + 1/457 > 1/457 + ... + 1/457 = 201/457 > 0,4
Vậy 1 + 1/2 + ... + 1/456 + 1/457 > 1 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 0,4 = 5,4
Vậy A > 458*5,4 - 457 = 2016,2
Vậy A > 2016.
Ta có:
A = (456/2 + 1) + ... + (2/456 + 1) + (1/457 + 1) + 1
A = 458 + 458/2 + ... + 458/456 + 458/457 - 458/458
A = 458 (1/2 + ...+ 1/456 + 1/457 + 1/458)
Xét 1/2 + ... + 1/456 + 1/458, ta có
1/2 = 1/2
1/3 + 1/4 > 1/4 + 1/4 = 1/2
1/5 + 1/6 + ... + 1/8 > 1/8 + 1/8 + ... + 1/8 = 1/2
1/9 + 1/10 +...+ 1/16 > 1/16 + 1/16 +...+ 1/16 = 1/2
1/17 + 1/18 + ... + 1/32 > 1/32 + ... + 1/32 = 1/2
1/33+ 1/34 + ... + 1/64 > 1/64 + ...+ 1/64 = 1/2
1/65 + 1/66 + ...+ 1/128 > 1/128 + ... + 1/128 = 1/2
1/129 + 1/130 + ... + 1/256 > 1/256 + ...+ 1/256 = 1/2
1/257 + 1/258 + ... + 1/458 > 1/458 + ... + 1/458 = 202/458
Vậy 1/2 + ... + 1/456 + 1/457 > 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 1/2 + 202/458 = 4 + 202/458 = 2034/458
Vậy A > 458*2034/458 = 2034
Vậy A > 2016.
\(A=\left(\dfrac{456}{2}+1\right)+...+\left(\dfrac{2}{456}+1\right)+\left(\dfrac{1}{457}+1\right)+1\)
\(A=458+\dfrac{458}{2}+....+\dfrac{458}{456}+\dfrac{458}{457}-\dfrac{458}{458}\)
\(A=458\left(\dfrac{1}{2}+...+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\right)\)
Ta xét \(\dfrac{1}{2}+....+\dfrac{1}{456}+\dfrac{1}{457}+\dfrac{1}{458}\)có :
\(\dfrac{1}{2}=\dfrac{1}{2}\)
\(\dfrac{1}{3}+\dfrac{1}{4}>\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{8}>\dfrac{1}{8}+\dfrac{1}{8}+...+\dfrac{1}{8}=\dfrac{1}{2}\)
\(\dfrac{1}{9}+\dfrac{1}{10}+....+\dfrac{1}{16}>\dfrac{1}{16}+....+\dfrac{1}{16}=\dfrac{1}{2}\)
\(\dfrac{1}{17}+\dfrac{1}{18}+....+\dfrac{1}{32}>\dfrac{1}{32}+.....+\dfrac{1}{32}=\dfrac{1}{2}\)
\(\dfrac{1}{33}+\dfrac{1}{34}+....+\dfrac{1}{64}>\dfrac{1}{64}+....+\dfrac{1}{64}=\dfrac{1}{2}\)
\(\dfrac{1}{65}+\dfrac{1}{66}+.....+\dfrac{1}{128}>\dfrac{1}{128}+....+\dfrac{1}{128}=\dfrac{1}{2}\)
\(\dfrac{1}{129}+\dfrac{1}{130}+.....+\dfrac{1}{256}>\dfrac{1}{256}+....+\dfrac{1}{256}=\dfrac{1}{2}\)
\(\dfrac{1}{257}+\dfrac{1}{258}+....+\dfrac{1}{458}>\dfrac{1}{458}+...+\dfrac{1}{458}=\dfrac{1}{2}\)
Vậy ta thấy được rằng
\(\dfrac{1}{2}+...+\dfrac{1}{456}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{202}{458}\)
\(=4+\dfrac{202}{458}=\dfrac{2034}{458}\)
Vậy \(A>458.\dfrac{2034}{458}=2034\)
Hay tức là A > 2016 ( đpcm )
1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +......+ 456 - 457
= (1 - 2) + (3 - 4) + (5 - 6) + ...... + (455 - 456) + 457
= -1 + (-1) + (-1) + ...... + (-1) + 457
= -1 x 228 + 457
= -228 + 457
= 229
Dãy \(1;4;7;10;13;...;451;454;454\)
Có số số hạng là : \(\left(454-1\right):3+1=152\)
Mà gộp thành các cặp nên có số cặp là \(152:2=76\)
Bài này mk có giải rùi mà
Số số hạng của dãy số trên là :
( 457 - 1 ) : 1 + 1 = 457 ( số )
Tổng của dãy số trên là :
( 457 + 1 ) x 457 : 2 = 104653
Đáp số : 104653