Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A=2+22+23+...+22010
=(2+22)+(23+24)+...+(22009+22010)
=2(1+2)+23(1+2)+...+22009(1+2)
=2.3+23.3+...+22009.3 chia hết cho 3 (1)
Ta có : A=2+22+23+...+22010
=(2+22+23)+(24+25+26)+...+(22008+22009+22010)
=2(1+2+22)+24(1+2+22)+...+22008(1+2+22)
=2.7+24.7+...+22008.7 chia hết cho 7 (2)
Từ (1) và (2)
=> A chia hết cho cả 3 và 7
Vậy A chia hết cho cả 3 và 7.
A=\(2^1\)+\(2^2\)+\(2^3\)+...+\(2^{2010}\)
=(\(2^1\)+\(2^2\)+\(2^3\))+...+(\(2^{2008}\) +\(2^{2009}\)+\(2^{2010}\))
=2(1+2+\(2^2\))+\(2^4\)(1+2+\(2^2\))+...+\(2^{2008}\)(1+2+\(2^2\))
=2.7+\(2^4\).7+...+\(2^{2008}\).7
=7(2+\(2^4\)+...+\(2^{2008}\)) chia hết cho 7 (đ.p.c.m)
+)A=\(2^1\)+\(2^2\)+\(2^3\)+...+\(2^{2010}\)
=(\(2^1\)+\(2^2\))+...+(\(2^{2009}+2^{2010}\))=2(1+2)+\(2^3\)(1+2)+...+\(2^{2009}\)(1+2)=3(2+\(2^3+2^{2009}\)) chia hết cho 3 (đ.p.c.m)
a, 21.52.17 = 2.25.17 = 50.17 = 850
b, 22 + 23 + 24 = 4 + 8 + 16 = 28
c, 25.3 + 24:8 + 50: 52
= 32.3 + 16:8 + 50:25
=96 + 2 + 2
= 100
d, 112 - 102 - 32
= 121 - 100 - 9
= 21 - 9
= 12
e, 13 + 23 + 33 + 43 + 53
= ( 1+ 2+3+4+5)2
= 152
= 225
\(A=2^2\left(1+2^2\right)+2^6\left(1+2^2\right)+...+2^{18}\left(1+2^2\right)\)
=5(2^2+2^6+...+2^18) chia hết cho 5
S = ( 21 + 22 ) + ( 23 + 24 ) + ..... + ( 259 + 260 )
S = 2 x ( 1 + 2 ) + 23 x ( 1 + 2 ) + .......... + 259 x ( 1 + 2 )
S = 2 x 3 + 23 x 3 + ..... + 259 x 3
S = ( 2 + 23 + ........ + 259 ) x 3
mà 3 \(⋮\)3 => S \(⋮\) 3
Ta có :
S= 2^1+2^2+2^3+...+2^60
S= (2^1+2^2)+(2^3+2^4)+...+(2^59+2^60)
s=2(1+2)+2^3(1+2)+...+2^59(1+1)
S= 3(2+2^3+...+2^59)
=> đpcm
\(A=1+2+2^2+2^3+...+2^{2021}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2022}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{2022}-1-2-2^2-...-2^{2021}=2^{2022}-1>2^{2021}-1=N\)
\(a=1+2+2^2+...+2^{2021}\\ \Rightarrow2a=2+2^2+2^3+...+2^{2022}\\ \Rightarrow2a-a=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow a=2^{2022}-1>2^{2021}-1=n\)
\(2A=2^1+2^2+...+2^{2009}\)
nên \(A=2^{2009}-1\)
=>B-A=1