K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Gọi 8 số đó là \(n_i=\overline{a_ib_i}\) với \(1\le i\le8\).
Với mỗi 2 số \(n_i,n_j\left(i\ne j,1\le i,j\le8\right)\), ta có:
\(N_{ij}=\overline{a_ib_i0a_jb_j}\)
\(=10000a_i+1000b_i+10a_j+b_j\)
\(=10010a_i+1001b_i+\left(10a_j-10a_i\right)+\left(b_j-b_i\right)\)
\(=10010a_i+1001b_i+n_j-n_i\)
Để ý rằng một số khi chia cho 7 chỉ có 7 số dư phân biệt là 0, 1, 2,..., 6. Do ta chọn 8 số \(n_i\) nên theo nguyên lý Dirichlet sẽ tồn tại 2 số \(n_k,n_l\left(k\ne l,1\le k,l\le8\right)\) mà chúng có cùng số dư khi chia cho 7.
\(\Rightarrow n_k-n_l⋮7\)
Khi đó \(N_{kl}=10010a_k+1001b_k+\left(n_l-n_k\right)⋮7\) (do \(1001⋮7\))
Vậy ta có đpcm.