Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MCB}=\widehat{NBC}\)
BC chung
DO đó: ΔMBC=ΔNCB
Suy ra: MB=NC
Xét ΔPBC vuông tại P và ΔQCB vuông tại Q có
BC chung
\(\widehat{PCB}=\widehat{QBC}\)
Do đó: ΔPBC=ΔQCB
Suy ra: BP=CQ
b: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
Xét ΔJBC có \(\widehat{JBC}=\widehat{JCB}\)
nên ΔJBC cân tại J
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: JB=JC
nên J nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,J thẳng hàng
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{BAM}\) chung
AM=AN
Do đó:ΔABM=ΔACN
Suy ra: BM=CN
Xét ΔQBC vuông tại Q và ΔPCB vuông tại P có
BC chung
\(\widehat{QBC}=\widehat{PCB}\)
Do đó: ΔQBC=ΔPCB
Suy ra: CQ=BP
b: Xét ΔNBC và ΔMCB có
NB=MC
BC chung
NC=MB
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
Xét ΔJBC có \(\widehat{JBC}=\widehat{JCB}\)
nên ΔJBC cân tại J
=>JB=JC
hay J nằm trên đường trung trực của BC(2)
Ta có: AB=AC
nên A nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,J thẳng hàng
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
a: Xét ΔADE có
AG vừa là đường cao, vừa là phân giác
nên ΔADE cân tại A
=>AD=AE
b: góc BFD=góc DEA
góc BDF=góc BEA
Do đo: góc BFD=góc BDF
=>ΔBFD cân tại B
c: Xét ΔBMF và ΔCME có
góc BMF=góc CME
MB=MC
góc MBF=góc MCE
Do đó: ΔBMF=ΔCME
=>BF=CE=BD
Kẻ \(BN\perp AH\left(N\in AC\right)\)
Khi đó \(BN//IK\)(cùng vuông góc với AH)
Kết hợp với I là trung điểm của BM suy ra IK là đường trung bình của \(\Delta MBC\)
\(\Rightarrow\)K là trung điểm của MN
hay MK = NK kết hợp giả thiết AK = CK suy ra AN = CM (cộng theo vế) (1)
Xét \(\Delta ABN\)và \(\Delta CAH\)có:
AB = CA (gt)
\(\widehat{ABN}=\widehat{CAH}\)(cùng phụ với \(\widehat{BAH}\))
Do đó \(\Delta ABN=\Delta CAH\left(cgv-gnk\right)\)
\(\Rightarrow AN=CH\)(hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra CH = CM
Mà \(\widehat{HCM}=90^0\)suy ra \(\Delta HCM\)vuông cân tại C
Vậy \(\widehat{HMC}=45^0\)
a: Xét ΔAMN có
Ax vừa là đường cao, vừa là phân giác
=>ΔAMN cân tại A
b: BE//AC
=>góc BEM=góc ANE
=>góc BEM=góc BME
=>BE=BM
Xét ΔDEB và ΔDNC có
góc DBE=góc DCN
DB=DC
góc BDE=góc NDC
=>ΔDEB=ΔDNC
=>BE=NC
=>BE=CN