K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2016

vì nếu dùng 4 số bé nhất 1;2;3;4 thì có tổng bằng 10

=> + nếu giảm số 1 đi 1 đv thì là số 0 (loại)

     + nếu giảm số 2 đi 1 đv thì có 2 số 1 (lấy)

     + nếu giảm số 3 đi 1 đv thì có 2 số 2 (lấy)

     + nếu giảm số 4 đi 1 đv thì có 2 số 3 (lấy)

TH khác : nếu là 2;3;4;5 thì cx khử như trên nhé

vậy 4 số nguyên dương có tổng = 9 thì có ít nhất 2 số bằng nhau(đpcm)

     

5 tháng 8 2016

 giả sử có 5 số tự nhiên khác nhau:

aVới 4 số a,b,c,d ta chỉ có tỉ lệ thức ad=bc(ko có ab=cd hay ac=bd)

với 4 số a,b,c,e cũng vậy

khi ấy ae=bc=ad nên e=d(do e,d>0)dẫn đến vô lí.

vậy chỉ có nhiều nhất là 4 số khác nhau.

Câu b giả sử chỉ có nhiều nhất 12 số bằng nhau.

Từ câu a ta có số các số lớn nhất có thể là 12*4=48(số)

(có 12 số=a,12số=b,...) nhưng 48<50 dẫn đến vô lí.

Vậy có ít nhất 13 số

26 tháng 7 2019

Ta chứng minh trong 2003 số nguyên dương đã cho chỉ nhận nhiều nhất 4 giá tri khác nhau.

Thật vậy giả sử trong các số đã cho có nhiều hơn 4 chữ số khác nhau, giả sử \(a_1,a_2,a_3,a_4,a_5\)là 5 số khác nhau bất kì. Không mất tính tổng quát giả sử

\(a_1< a_2< a_3< a_4< a_5\)(1)

Theo đầu bài \(a_1a_2=a_3a_4\)(2)

Theo (1) không xảy ra \(a_1a_2=a_3a_4\)hoặc\(a_1a_3=a_2a_4.\)

Tương tự 4 số khác nhau \(a_1,a_2,a_3,a_5\)thì \(a_1a_5=a_2a_3\)(3).

Từ (2) và (3) suy ra \(a_4=a_5.\)Mâu thuẫn.

Vậy trong 2003 số nguyên dương đã cho không thể có hơn 4 số khác nhau. Mà 2003 = 4.500 + 3.

Do đó trong 2003 số tự nhiên dương đã cho luôn tìm được ít nhất 500 + 1 = 501 số bằng nhau.