K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

ui bạn ơi mik cx đang định hỏi bài này nì

16 tháng 1 2018

Ta có: a+b+c+d=0

\(\Leftrightarrow\) c = -(a+b+c+d)

Nên:

Xét hiệu: ab - cd = ab+d(a+b+d)

\(\Leftrightarrow\) ab - cd = ab+ad+bd+d2

\(\Leftrightarrow\) ab - cd = a(b+d)+d(b+d)

\(\Leftrightarrow\) ab - cd = (b+d)(a+d) (1)

Xét hiệu: bd - ac = bd+a(a+b+d)

\(\Leftrightarrow\) bd - ac = bd+a2+ab+ad

\(\Leftrightarrow\) bd - ac =d(a+b)+a(a+b)

\(\Leftrightarrow\) bd - ac = (a+b)(a+d) (2)

Xét hiệu: ad - bc = ad+b(a+b+d)

\(\Leftrightarrow\) ad - bc = ad+ab+b2+bd

\(\Leftrightarrow\) ad - bc = a(b+d)+b(b+d)

\(\Leftrightarrow\)ad - bc = (a+b)(b+d) (3)

Từ (1),(2),(3) ta có:

\(\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)\) = (b+d)(a+d)(a+b)(a+d)(a+b)(b+d)

\(\Leftrightarrow\) (ab-cd)(bd-ac)(ad-bc) = (a+b)2.(b+d)2.(a+d)2

\(\Leftrightarrow\) (ab-cd)(bd-ac)(ad-bc) = [(a+b)(b+d)(a+d)]2

\(\Leftrightarrow\) \(\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) = \(\sqrt{\left[\left(a+b\right)\left(b+d\right)\left(a+d\right)\right]^2}\)

\(\Leftrightarrow\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) = |(a+b)(b+d)(a+d)| (4)

Mà a,b,c,d là các số hữu tỉ

\(\Rightarrow\) |(a+b)(b+d)(a+d)| là số hữu tỉ (5)

Từ (4) và (5) chứng tỏ \(\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) là số hữu tỉ

16 tháng 1 2018

thank you ! vui

NV
29 tháng 9 2019

\(\frac{100a+10b+c}{a+10b+c}=\frac{100b+10c+a}{b+10c+a}\Leftrightarrow\frac{99a}{a+10b+c}=\frac{99b}{b+10c+a}\Leftrightarrow\frac{a}{a+10b+c}=\frac{b}{b+10c+a}\)

- Nếu \(a=0\Rightarrow b=0\) ngược lại thì hiển nhiên ta có \(\frac{a}{10b+c}=\frac{b}{10c+a}\)

- Nếu a; b đều khác 0

\(\Rightarrow\frac{a+10b+c}{a}=\frac{b+10c+a}{b}\Rightarrow\frac{10b+c}{a}=\frac{10c+a}{b}\Rightarrow\frac{a}{10b+c}=\frac{b}{10c+a}\) (đpcm)

Bài 2 tương tự

\(\frac{10a+11b+c}{a+b}=\frac{10b+11c+a}{b+c}=\frac{10c+11a+b}{c+a}\) (tách \(\frac{10a+11b+c}{a+b}=10+\frac{b+c}{a+b}\) và tương tự, bài 1 cũng vậy nếu em chưa hiểu tại sao lại rút gọn được như dấu tương đương đầu tiên)

\(\Rightarrow\frac{b+c}{a+b}=\frac{c+a}{b+c}=\frac{a+b}{c+a}=\frac{2a+2b+2c}{2a+2b+2c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}b+c=a+b\\c+a=b+c\\a+b=c+a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Bài 3: Đề bài thiếu, cần thêm 1 điều kiện gì đó

Em lấy thử \(\left(a;b;c;d\right)=\left(4;1;0;3\right)\) thì rõ ràng thỏa mãn giả thiết (\(0=0\)) nhưng 4 số này sao lập tỉ lệ thức được?

27 tháng 9 2019

Vũ Minh TuấnBăng Băng 2k6tthNguyễn Hoàng NhiNguyễn Thị Diễm Quỳnh@Nk>↑@nguyen thi vangHoàng Tử HàHuyền

24 tháng 11 2016

Áp dụng tính chất dãy tủ số bằng nhau, ta có:

\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1

=>\(\frac{a+b-c}{c}\) = 1

a+b-c = c

a+b =2c

=>\(\frac{a-b+c}{b}\) = 1

a-b+c = c

a+c =2b

=>\(\frac{-a+b+c}{a}\) = 1

-a+b+c = a

b+c =2a

Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:

M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

 

 

24 tháng 11 2016

thật là logic

\(\frac{\left(ab+bc+cd+ad\right).abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}\)\(=\frac{\left(ab+bc+cd+ad\right)abcd}{ac+ad+bc+bd+ab+cd-ac-bd}\)

\(=\frac{\left(ab+bc+ad+cd\right).abcd}{ab+bc+cd+ad}\)\(=abcd\)

18 tháng 8 2016

có:a+b-c /c= a-b+c / b = -a+b+c / a = a+b-c+a-b+c -a+b+c / c+b+a = a+b+c / c+b+a=1

=> a+b-c/ c =1 => a+b-c = c => a+b = c+c=2c

    a-b+c/ b =1 => a-b+c= b => a+c = b+b= 2b

     -a+b+c / a =1 => -a+b+c = a => b+c =a+a=2a

có M= ( a+b)(b+c)(c+a) / abc 

        = 2c . 2a . 2b / abc

        = 8abc/abc

        =8

vậy M=8

       = 2c . 2a.

18 tháng 8 2016

câu cuối sau phần kết luận  = 2c . 2a bỏ nha ( viết vội quá)