Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a+b+c+d=0
\(\Leftrightarrow\) c = -(a+b+c+d)
Nên:
Xét hiệu: ab - cd = ab+d(a+b+d)
\(\Leftrightarrow\) ab - cd = ab+ad+bd+d2
\(\Leftrightarrow\) ab - cd = a(b+d)+d(b+d)
\(\Leftrightarrow\) ab - cd = (b+d)(a+d) (1)
Xét hiệu: bd - ac = bd+a(a+b+d)
\(\Leftrightarrow\) bd - ac = bd+a2+ab+ad
\(\Leftrightarrow\) bd - ac =d(a+b)+a(a+b)
\(\Leftrightarrow\) bd - ac = (a+b)(a+d) (2)
Xét hiệu: ad - bc = ad+b(a+b+d)
\(\Leftrightarrow\) ad - bc = ad+ab+b2+bd
\(\Leftrightarrow\) ad - bc = a(b+d)+b(b+d)
\(\Leftrightarrow\)ad - bc = (a+b)(b+d) (3)
Từ (1),(2),(3) ta có:
\(\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)\) = (b+d)(a+d)(a+b)(a+d)(a+b)(b+d)
\(\Leftrightarrow\) (ab-cd)(bd-ac)(ad-bc) = (a+b)2.(b+d)2.(a+d)2
\(\Leftrightarrow\) (ab-cd)(bd-ac)(ad-bc) = [(a+b)(b+d)(a+d)]2
\(\Leftrightarrow\) \(\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) = \(\sqrt{\left[\left(a+b\right)\left(b+d\right)\left(a+d\right)\right]^2}\)
\(\Leftrightarrow\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) = |(a+b)(b+d)(a+d)| (4)
Mà a,b,c,d là các số hữu tỉ
\(\Rightarrow\) |(a+b)(b+d)(a+d)| là số hữu tỉ (5)
Từ (4) và (5) chứng tỏ \(\sqrt{\left(ab-cd\right)\left(bd-ac\right)\left(ad-bc\right)}\) là số hữu tỉ
Ta có
a/b<c/d \(\Leftrightarrow\)ad<bc (1)
Thêm ab vào 2 vế của (1) ta được:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (2) ta được:
ad+cd<bc+cd hay d(a+c)<c(b+d) =>c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d
**** bạn
a, \(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)
\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)
VCif a/b<c/d => ad<bc
=> ab + ad < ab +ad
=> a/b < (a+c) / (b+d) (1)
Cm tương tự :
(a+c) / (b+d) < c/d (2)
Từ 1 và 2 => DPCM
Áp dụng tính chất dãy tủ số bằng nhau, ta có:
\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1
=>\(\frac{a+b-c}{c}\) = 1
a+b-c = c
a+b =2c
=>\(\frac{a-b+c}{b}\) = 1
a-b+c = c
a+c =2b
=>\(\frac{-a+b+c}{a}\) = 1
-a+b+c = a
b+c =2a
Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:
M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8
Bài làm:
Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)
\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)
\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
Thay vào ta tính được a và b
b,c tương tự a
a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)
\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)
\(a.b.c=\frac{3}{5}\)
\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)
b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5
Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5
c,ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a:
ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= 2*3 = 6 (thỏa)
_Với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= -2*3 = -6 (thỏa)
_Với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
\(\frac{\left(ab+bc+cd+ad\right).abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-d\right)}\)\(=\frac{\left(ab+bc+cd+ad\right)abcd}{ac+ad+bc+bd+ab+cd-ac-bd}\)
\(=\frac{\left(ab+bc+ad+cd\right).abcd}{ab+bc+cd+ad}\)\(=abcd\)
a) \(\frac{a^2m-a^2n-b^2n+b^2m}{a^2+b^2}=\frac{a^2\left(m-n\right)+b^2\left(m-n\right)}{a^2+b^2}\)
\(=\frac{\left(m-n\right)\left(a^2+b^2\right)}{a^2+b^2}=m-n\)
b) \(\frac{\left(ab+bc+cd+ad\right)abcd}{\left(c+d\right)\left(a+b\right)+\left(b-c\right)\left(a-b\right)}\)
\(=\frac{\left[b.\left(a+c\right)+d.\left(a+c\right)\right].abcd}{ac+bc+da+db+ab-b^2-ca+bc}\)
\(=\frac{\left(a+c\right)\left(d+b\right)abcd}{2bc+da+db+ab-b^2}\)
ui bạn ơi mik cx đang định hỏi bài này nì