Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét:Ghi nhớ tam giác Pascal cho bậc 4:\(1\rightarrow4\rightarrow6\rightarrow4\rightarrow1\)
cần cù bù thông minh :)
\(a^2+b^2+\left(a-b\right)^2=c^2+d^2+\left(c-d\right)^2\)
\(\Leftrightarrow a^2+b^2+a^2-2ab+b^2=c^2+d^2+c^2-2cd+d^2\)
\(\Leftrightarrow a^2-ab+b^2=c^2-cd+d^2\)
\(\Rightarrow\left(a^2-ab+b^2\right)^2=\left(c^2-cd+d^2\right)^2\) ( mạnh dạn bình phương )
\(\Leftrightarrow a^4+a^2b^2+b^4-2a^3b-2ab^3+2a^2b^2=c^4+c^2d^2+d^4-2c^3d-2cd^3+2c^2d^2\)
\(\Leftrightarrow a^4+3a^2b^2+b^4-2a^3b-2ab^3=c^4+3c^2d^2+d^4-2c^3d-2cd^3\left(1\right)\)
Mặt khác:
\(a^4+b^4+\left(a-b\right)^4\)
\(=a^4+b^4+a^4-4a^3b+6a^2b^2-4ab^3+b^4\)
\(=2\left(a^4-2a^3b-2ab^3+3a^2b^2\right)\left(2\right)\)
Tương tự:
\(c^4+d^4+\left(c-d\right)^4=2\left(c^4-2c^3d-2cd^3+3c^2d^2\right)\left(3\right)\)
Từ ( 1 );( 2 );( 3 ) suy ra đpcm
\(\dfrac{\left|x-2\right|}{\sqrt{x-1}}=\dfrac{x-2}{\sqrt{x-1}}\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-1>0\end{matrix}\right.\)
\(\Rightarrow x\ge2\)
\(S=\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}-\left(2+\sqrt{3}\right)=-2\sqrt{3}\)
BĐT cần c/m tương đương:
\(2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{4+2\left(ab+ac+ad+bc+bd+cd\right)}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\sqrt{\left(a+b+c+d\right)^2}\)
\(\Leftrightarrow2\left(a^3+b^3+c^3+d^3\right)\ge2+\dfrac{3}{2}\left(a+b+c+d\right)\)
\(\Leftrightarrow4\left(a^3+b^3+c^3+d^3\right)\ge4+3\left(a+b+c+d\right)\)
Dễ dàng chứng minh điều này bằng AM-GM:
\(a^3+a^3+1+b^3+b^3+1+c^3+c^3+1+d^3+d^3+1\ge3a^2+3b^2+3c^2+3d^2\)
\(\Rightarrow2\left(a^3+b^3+c^3+d^3\right)+4\ge12\)
\(\Rightarrow a^3+b^3+c^3+d^3\ge4\) (1)
Lại có:
\(a^2+b^2+c^2+d^2\ge\dfrac{1}{4}\left(a+b+c+d\right)^2\)
\(\Rightarrow a+b+c+d\le4\) (2)
(1);(2) \(\Rightarrow4\left(a^3+b^3+c^3+d^3\right)\ge16\ge4+3.4\ge4+3\left(a+b+c+d\right)\) (đpcm)
Đặt bđt là (*)
Để (*) đúng với mọi số thực dương a,b,c thỏa mãn :
\(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)thì \(a=b=c=1\) cũng thỏa mãn (*)
\(\Rightarrow4\le\sqrt[n]{\left(n+2\right)^2}\)
Mặt khác: \(\sqrt[n]{\left(n+2\right)\left(n+2\right).1...1}\le\frac{2n+4+\left(n-2\right)}{n}=3+\frac{2}{n}\)
Hay \(n\le2\)
Với n=2 . Thay vào (*) : ta cần CM BĐT
\(\frac{1}{\left(2a+b+c\right)^2}+\frac{1}{\left(2b+c+a\right)^2}+\frac{1}{\left(2c+a+b\right)^2}\le\frac{3}{16}\)
Với mọi số thực dương a,b,c thỏa mãn: \(a+b+c\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Vì: \(\frac{1}{\left(2a+b+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)}\)
Tương tự ta có:
\(\frac{1}{\left(2b+a+c\right)^2}\le\frac{1}{4\left(a+b\right)\left(a+c\right)};\frac{1}{\left(2c+a+b\right)^2}\le\frac{1}{4\left(a+c\right)\left(c+b\right)}\)
Ta cần CM:
\(\frac{a+b+c}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\frac{3}{16}\Leftrightarrow16\left(a+b+c\right)\le6\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Ta có BĐT: \(9\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8\left(a+b+c\right)\left(ab+bc+ca\right)\)
Và: \(3\left(ab+cb+ac\right)\le3abc\left(a+b+c\right)\le\left(ab+cb+ca\right)^2\Rightarrow ab+bc+ca\ge3\)
=> đpcm
Dấu '=' xảy ra khi a=b=c
=> số nguyên dương lớn nhất : n=2( thỏa mãn)
a) Bất đẳng thức đúng khi a = b = 2c
do đó \(\sqrt{c\left(2c-c\right)}+\sqrt{c\left(2c-c\right)}\le n\sqrt{2c.2c}\Leftrightarrow n\ge1\)
xảy ra khi n = 1
Thật vậy, ta có :
\(\sqrt{\frac{c}{b}.\frac{a-c}{a}}+\sqrt{\frac{c}{a}.\frac{b-c}{b}}\le\frac{1}{2}\left(\frac{c}{b}+\frac{a-c}{a}+\frac{c}{a}+\frac{b-c}{b}\right)\)
\(\Leftrightarrow\sqrt{c\left(a-c\right)}+\sqrt{c\left(b-c\right)}\le\sqrt{ab}\)
Vậy n nhỏ nhất là 1
b) Ta có : a + b = \(\sqrt{\left(a+b\right)^2}\le\sqrt{\left(a+b\right)^2+\left(a-b\right)^2}=\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng, ta được : \(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(n+1\right)},\sqrt{2}+\sqrt{n-1}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{n}+\sqrt{1}\le\sqrt{2\left(1+n\right)};\sqrt{n-1}+\sqrt{2}\le\sqrt{2\left(1+n\right)},...\)
\(\sqrt{1}+\sqrt{n}\le\sqrt{2\left(1+n\right)}\)
do đó : \(4\left(\sqrt{1}+\sqrt{2}+...+\sqrt{n}\right)\le2n\sqrt{2\left(1+n\right)}\)
\(\Rightarrow\sqrt{1}+\sqrt{2}+...+\sqrt{n}\le n\sqrt{\frac{n+1}{2}}\)
Giả sử không có BĐT nào sai, ta có:
\(4\left(b+d\right)>a^2+c^2\ge2ac\)
Mà \(ac\ge2\left(b+d\right)\)
\(\Rightarrow4\left(b+d\right)>4\left(b+d\right)\) Vô lí
=> có ít nhất 1 bđt sai
Ta có :\(ac\ge2\left(b+d\right)\)\(\Leftrightarrow2ac\ge4\left(b+d\right)\)(1)
Giả sử hai bất đẳng thức \(a^2< 4b;c^2< 4d\)đều đúng , cộng vế với vế hai bất đẳng thức trên ta đc
\(a^2+c^2< 4b+4d\Leftrightarrow a^2+c^2< 4\left(b+d\right)\)
Thay (1) vào bất đẳng thức trên ta đc:\(a^2+c^2< 2ac\)\(\Leftrightarrow\)\(a^2-2ac+c^2< 0\)
\(\Leftrightarrow\)\(\left(a-c\right)^2< 0\)=> vô lí
Vậy có ít nhất một trong 2 bất đẳng thức trên là sai.