K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 5 2020

Do vai trò của a;b;c là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow ab+bc\ge b^2+ac\Leftrightarrow\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\) (chia 2 vế cho bc)

Tương tự: \(\frac{c}{a}+1\ge\frac{b}{a}+\frac{c}{b}\) (chia 2 vế cho ab)

Cộng vế với vế: \(\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)

\(\Rightarrow VT\le2\left(\frac{a}{c}+\frac{c}{a}\right)+2\)

Nên ta chỉ cần chứng minh: \(2\left(\frac{a}{c}+\frac{c}{a}\right)+2\le7\Leftrightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)

Do \(1\le c\le a\le2\Rightarrow1\le\frac{a}{c}\le2\)

Đặt \(\frac{a}{c}=x\Rightarrow1\le x\le2\)

Ta cần chứng minh: \(x+\frac{1}{x}\le\frac{5}{2}\Leftrightarrow2x^2-5x+2\le0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\le0\) (luôn đúng với \(x\in\left[1;2\right]\))

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;1\right);\left(2;1;1\right)\) và hoán vị

11 tháng 5 2020

Vậy là mình làm sai rồi :(

25 tháng 8 2021

à bạn ơi xem lại đề giúp mình nha! mình thấy sai sai ý đây để mình chỉ cho bạn cái sai:

vì a,b,c>=1 nên a,b,c.>0

a/b+b/a>=2(bdt 2 phân số đảo ngược của lớp 6)

tương tự:b/c+c/b>=2,c/a+a/c>=2

cộng các vế trên ta có:a/b+b/a+b/c+c/b+c/a+a/c>=8

suy ra điều cm trên là vô lí

7 tháng 12 2020

Ta có: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\Leftrightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\le7\)

Không mất tính tổng quát, giả sử \(a\ge b\ge c\)

Khi đó ta có \(\left(a-b\right)\left(b-c\right)\ge0\Leftrightarrow ab+bc\ge b^2+ca\)

\(\Leftrightarrow\frac{a}{c}+1\ge\frac{a}{b}+\frac{b}{c};\frac{a}{c}+1\ge\frac{c}{b}+\frac{b}{a}\)

\(\Rightarrow\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\le2+2\left(\frac{a}{c}+\frac{c}{a}\right)\)

Ta cần chứng minh \(2\left(\frac{a}{c}+\frac{c}{a}\right)\le5\). Tức là chứng minh \(\left(\frac{2a}{c}-1\right)\left(1-\frac{2c}{a}\right)\le0\)( *)

Bất đẳng thức (*) luôn đúng vì \(2\ge a\ge c\ge1\Rightarrow\frac{a}{c}\ge1;\frac{c}{a}\ge\frac{1}{2}\). => đpcm

10 tháng 9 2018

Ta có: \(\left(a-b\right)^2\left(a+b\right)\ge0\Rightarrow a^3+b^3\ge a^2b+ab^2\)

\(\Rightarrow a^3+b^3+abc\ge a^2b+ab^2+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Chứng minh tương tự rồi cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}\)

Ta có đpcm
Dấu "=" xảy ra khi a=b=c

13 tháng 12 2018

C/m: BDT:  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)   (1)

That vay ta co:

\(a^3+b^3+abc-ab\left(a+b+c\right)=\left(a+b\right)\left(a-b\right)^2\ge0\)   (luon dung)

Tuong tu ta co:  \(b^3+c^3+abc\ge bc\left(a+b+c\right)\)  (2)

                         \(c^3+a^3+abc\ge ca\left(a+b+c\right)\)   (3)

Tu (1), (2), (3)  suy ra:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)   (dpcm)

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???