K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2021

à bạn ơi xem lại đề giúp mình nha! mình thấy sai sai ý đây để mình chỉ cho bạn cái sai:

vì a,b,c>=1 nên a,b,c.>0

a/b+b/a>=2(bdt 2 phân số đảo ngược của lớp 6)

tương tự:b/c+c/b>=2,c/a+a/c>=2

cộng các vế trên ta có:a/b+b/a+b/c+c/b+c/a+a/c>=8

suy ra điều cm trên là vô lí

NV
11 tháng 5 2020

Do vai trò của a;b;c là hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(a\ge b\ge c\)

\(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Leftrightarrow ab+bc\ge b^2+ac\Leftrightarrow\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\) (chia 2 vế cho bc)

Tương tự: \(\frac{c}{a}+1\ge\frac{b}{a}+\frac{c}{b}\) (chia 2 vế cho ab)

Cộng vế với vế: \(\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)

\(\Rightarrow VT\le2\left(\frac{a}{c}+\frac{c}{a}\right)+2\)

Nên ta chỉ cần chứng minh: \(2\left(\frac{a}{c}+\frac{c}{a}\right)+2\le7\Leftrightarrow\frac{a}{c}+\frac{c}{a}\le\frac{5}{2}\)

Do \(1\le c\le a\le2\Rightarrow1\le\frac{a}{c}\le2\)

Đặt \(\frac{a}{c}=x\Rightarrow1\le x\le2\)

Ta cần chứng minh: \(x+\frac{1}{x}\le\frac{5}{2}\Leftrightarrow2x^2-5x+2\le0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\le0\) (luôn đúng với \(x\in\left[1;2\right]\))

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;2;1\right);\left(2;1;1\right)\) và hoán vị

11 tháng 5 2020

Vậy là mình làm sai rồi :(

6 tháng 12 2018

ban dung co khoe

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

16 tháng 7 2020

Mình xài p,q,r nhé :))

Ta có:

\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)

\(a^4+b^4+c^4=1-4q+2q^2+4r\)

Khi đó BĐT tương đương với:

\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)

\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)

\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )

21 tháng 7 2020

\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)

Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)

\(=p^3-3pq+3r\)

--------------------------------------

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)

\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)

\(=p^4-4p^2q+2q^2+4pr\)

Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq

Áp dụng AM-GM ta có : \(\frac{a}{a^2+1}=\frac{a}{a^2+\frac{1}{9}+\frac{8}{9}}\le\frac{a}{\frac{2a}{3}+\frac{8}{9}}=\frac{9a}{6a+8}\)

Áp dụng BĐT : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với \(x,y,z>0\)( Dễ dàng CM bằng AM-GM )

\(\left(6a+8+6b+8+6c+8\right)\left(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\right)\ge9\)

\(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\ge\frac{9}{30}=\frac{3}{10}\)

Ta có : \(\frac{9a}{6a+8}=\frac{3}{2}-\frac{12}{6a+8}\)

\(\rightarrow\frac{9a}{6a+8}+\frac{9b}{6b+8}+\frac{9c}{6c+8}=\frac{9}{2}-12\left(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\right)\)

Lại có : \(\frac{9}{2}-12\left(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\right)\le\frac{9}{2}-12.\frac{3}{10}=\frac{9}{2}-\frac{18}{5}=\frac{9}{10}\)

24 tháng 5 2021

Các bạn giúp mình với !

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

13 tháng 10 2018

Ta có: \(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a+ab^2}{1+b^2}-\frac{ab^2}{1+b^2}=a-\frac{ab^2}{1+b^2}\ge a-\frac{ab^2}{2b}=a-\frac{ab}{2}\)

Tương tự ta có: \(\frac{b}{1+c^2}\ge b-\frac{bc}{2}\);  \(\frac{c}{1+a^2}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT trên,ta được: \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\)

Do \(ab+bc+ca\ge\frac{\left(a+b+c\right)^2}{3}\) (dấu "=" xảy ra khi a = b = c) nên ta có:)

\(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge3-\frac{1}{2}\left(ab+bc+ca\right)\ge3-\frac{1}{2}.\frac{\left(a+b+c\right)^2}{3}=\frac{3}{2}^{\left(đpcm\right)}\)