Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C/m: BDT: \(a^3+b^3+abc\ge ab\left(a+b+c\right)\) (1)
That vay ta co:
\(a^3+b^3+abc-ab\left(a+b+c\right)=\left(a+b\right)\left(a-b\right)^2\ge0\) (luon dung)
Tuong tu ta co: \(b^3+c^3+abc\ge bc\left(a+b+c\right)\) (2)
\(c^3+a^3+abc\ge ca\left(a+b+c\right)\) (3)
Tu (1), (2), (3) suy ra:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)
\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\) (dpcm)
áp dụng BĐT cô si ta có a^3+1 >=2a\(\sqrt{a}\), tương tự.....
VT=<\(18\left(\frac{1}{2a\sqrt{a}}+\frac{1}{2b\sqrt{b}}+\frac{1}{2c\sqrt{c}}\right)\)=\(18\left(\frac{bc\sqrt{a}+ac\sqrt{b}+ab\sqrt{c}}{2abc\sqrt{abc}}\right)\)\(18\left(\frac{\sqrt{abc}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{2}\right)\)= \(9\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
ta lại có \(a+b+c>=\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)(1)
Mà \(\left(\frac{a+b+c}{3}\right)^3>=abc=1\)
==> \(\left(a+b+c\right)^3>=27\)
==>\(\left(a+b+c\right)^2>=9\)(2)
nhân (1) và (2) vế theo vế ==> (a+b+c)^3 >=\(9\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)(đpcm)
Đề: \(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\) ???
*Ta chứng minh : \(x^4-x^3+2\ge x+1\forall x>0\)
\(\Leftrightarrow x^4-x^3-x+1\ge0\Leftrightarrow\left(x-1\right)^2\left(x^2+x+1\right)\ge0\) ( đúng )
Do đó: \(VT\le\frac{1}{\sqrt{ab+a+1}}+\frac{1}{\sqrt{bc+b+1}}+\frac{1}{\sqrt{ca+c+1}}\) \(\le\sqrt{3\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)}=\sqrt{3}\)
Dấu "=" \(\Leftrightarrow a=b=c=1\)
1/ \(x^2+1\ge2x;x^2+y^2\ge2xy\Rightarrow\left(x^2+1\right)\left(x^2+y^2\right)\ge4x^2y\)
Dấu = xảy ra <=> x=1 và x=y <=> x=y=1
2/ \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\ge\left(a+b\right)\left(ab+0\right)=ab\left(a+b\right)\)
\(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{1}{ab\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}\)
chứng minh tương tự rồi cộng 2 cái kia vào rút gọn sẽ ra nhé bạn
Ta có:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)
\(\Leftrightarrow\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le1\)
Áp dụng BDT \(ab\left(a+b\right)\le a^3+b^3\)thì ta có:
\(\frac{1abc}{a^3+b^3+abc}\le\frac{abc}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
Tương tự ta có:
\(\hept{1\begin{cases}\frac{abc}{b^3+c^3+abc}\le\frac{a}{a+b+c}\\\frac{abc}{c^3+a^3+abc}\le\frac{b}{a+b+c}\end{cases}}\)
Cộng 3 cái trên vế theo vế ta được
\(\frac{abc}{a^3+b^3+abc}+\frac{abc}{b^3+c^3+abc}+\frac{abc}{c^3+a^3+abc}\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)
\(\Rightarrow\)ĐPCM
Với mọi a,b >0 có \(a^3+b^3\ge ab\left(a+b\right)\)(tự CM). Dấu "=" xảy ra <=> a=b và a,b>0
<=> \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)
<=> \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
CM tương tự cx có :\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)
\(\frac{1}{c^3+a^3+abc}\le\frac{1}{ac\left(a+b+c\right)}\)
=>A= \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ac\left(a+b+c\right)}=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}\)
<=> A\(\le\frac{1}{abc}\)
Dấu "=" xảy ra <=> a=b=c>0
Ta có: \(\left(a-b\right)^2\left(a+b\right)\ge0\Rightarrow a^3+b^3\ge a^2b+ab^2\)
\(\Rightarrow a^3+b^3+abc\ge a^2b+ab^2+abc=ab\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)
Chứng minh tương tự rồi cộng vế với vế ta được:
\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{a+b+c}.\frac{a+b+c}{abc}=\frac{1}{abc}\)
Ta có đpcm
Dấu "=" xảy ra khi a=b=c