K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

Khi ab>=1 thì1/(1+a^2)+1/(1+b^2)>=2/(1+ab)

25 tháng 4 2018

\(\frac{1}{\left(1+a^2\right)}+\frac{1}{\left(1+b^2\right)}\ge\frac{2}{\left(1+ab\right)}\)

\(\Leftrightarrow\left(1+b^2\right)\left(1+ab\right)+\left(1+a^2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)

\(\Leftrightarrow1+b^2+ab+ab^2+1+a^2+ab+a^3b-2\left(1+a^2+b^2+a^2b^2\right)\ge0\)

\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2+2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\left(đ\text{ieu nay khong the x ra}\right)\)

\(\text{Dau }"="\Leftrightarrow a=b=c=1\)

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

lấy bút xóa mà xóa hết là khỏe

24 tháng 1 2016

\(botay.com.vn\)

13 tháng 5 2019

>=8 nha

13 tháng 5 2019

Tại sao lại bằng 8

15 tháng 10 2018

Ta có: \(b;c\in\left[0;1\right]\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\) (1)

\(a;b;c\in\left[0;1\right]\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}}\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)

\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1\le0\)

\(\Leftrightarrow a+b+c-ab-bc-ca\le1\)(2)

Từ (1) và (2) suy ra: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\)

=> ĐPCM. Dấu "=" xảy ra <=> (a;b;c) là 1 trong các hoán vị của (0;1;1) hoặc (0;0;1).