Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2n + 1 = 2(n + 2) - 3
Do n + 2 \(⋮\)n + 2 => 2(n + 2) \(⋮\)n + 2
Để 2n + 1 \(⋮\)n + 2 thì 3 \(⋮\)n + 2 => n + 2 \(\in\)Ư(3) = {1; 3; -1; -3}
Lập bảng :
n+2 | 1 | 3 | -1 | -3 |
n | -1 | 1 | -3 | -5 |
Vì n nhỏ nhất nên n = -5
Vậy ...
Vì n là số có 2 chữ số
→10≤n≤99→21≤2n+1≤199
Vì 2n+1 là số chính phương→2n+1∈{25;36;49,64;81;100;121;144;169;196}
Vì 2n+1 là số lẻ→2n+1∈{25;49;81;121;169}
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
Vì n là số có 2 chữ số
\(\rightarrow10\le n\le99\)\(\rightarrow21\le2n+1\le199\)
Vì 2n+1 là số chính phương\(\rightarrow2n+1\in\left\{25;36;49,64;81;100;121;144;169;196\right\}\)
Vì 2n+1 là số lẻ\(\rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)
Ta có bảng sau:
2n+1 | 25 | 49 | 81 | 121 | 169 |
n | 12 | 24 | 40 | 60 | 84 |
3n+1 | 37 | 73 | 121 | 181 | 253 |
Với n=40 thì 2n+1=81 là số chính phương và 3n+1=121 là số chính phương
Vậy n=40
\(p=2a^{2n+1}+5a^{2n+1}-3a^{2n}-7a^{2n}+3a^{2n1}\)
\(p=\left(2a^{2n+1}+5a^{2n+1}+3a^{2n+1}\right)+\left(-3a^{2n}-7a^{2n}\right)\)
\(\Rightarrow P=10a^{2n+1}+\left(-10a\right)^{2n}\)
Mà \(2n⋮2\)còn \(2n+1⋮2̸\)
Do đó \(a>2\)thì\(P>0\)
cHÚC BẠN HỌC TÔT ~!!!
\(P=10a^{2n+1}-10a^{2n}>0\Leftrightarrow10a^{2n+1}>10a^{2n}\Leftrightarrow10a^{2n}.a>10a^{2n}\Leftrightarrow\hept{\begin{cases}a>0\\a>1\end{cases}\Leftrightarrow a>1}\)
Mình sẽ tách ra làm từng ý, bạn nhớ k cho mình nhé!
a) Gọi d là ƯCLN ( 2n + 3; 4n + 1 )
Ta có: 2n + 3 chia hết cho d
=> 2 ( 2n + 3 ) chia hết cho d
=> 4n + 6 chia hết cho d
Mà: 4n + 1 chia hết cho d
=> ( 4n + 6 ) - ( 4n + 1 ) chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư ( 5 )
Giả sử phân số không tối giản:
=> 2n + 3 chia hết cho 5
=> 2n + 3 + 5 chia hết cho 5
=> 2n + 8 chia hết cho 5
=> 2 ( n + 4 ) chia hết cho 5
Vì ƯCLN ( 2; 5 ) = 1
=> n + 4 chia hết cho 5
=> n + 4 = 5k ( k thuộc N* )
=> n = 5k - 4
Vậy với n khác 5k - 4 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
b) Gọi d = ƯCLN ( 3n + 2; 7n + 1 )
Ta có: 3n + 2 chia hết cho d => 7 ( 3n + 2 ) chia hết cho d => 21n + 14 chia hết cho d ( 1 )
7n + 1 chia hết cho d => 3 ( 7n + 1 ) chia hết cho d => 21n + 3 chia hết cho d ( 2 )
Có: ( 1 ) chia hết cho d; ( 2 ) chia hết cho d
=> ( 1 ) - ( 2 ) chia hết cho d
=> 11 chia hết cho d
=> d thuộc Ư ( 11 )
Giả sử phân số không tối giản:
=> 7n + 1 chia hết cho 11
=> 7n + 1+ 55 chia hết cho 11
=> 7n + 56 chia hết cho 11
=> 7 ( n + 8 ) chia hết cho 11
Vì ƯCLN ( 7; 11 ) = 1
=> n + 8 chia hết cho 11
=> n + 8 = 11k ( k thuộc N* )
=> n = 11k - 8
Vậy với n khác 11k - 8 ( k thuộc N* ) thì phân số bài cho sẽ tối giản.
Mình làm cho bạn 2 câu, câu còn lại tương tự, bạn tự làm ha! ^v^
Sửa đề: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
Ta có: \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}\)
\(=11\cdot25^n+8^n\cdot4+8^n\cdot2\)
\(=11\cdot25^n+6\cdot8^n\)
Vì \(25\equiv8\)(mod 17)
nên \(11\cdot25^n+6\cdot8^n\equiv11\cdot8^n+6\cdot8^n\equiv17\cdot8^n\equiv0\)(mod 17)
hay \(11\cdot5^{2n}+2^{3n+2}+2^{3n+1}⋮17\)(đpcm)
Bấm vô đây để tham khảo:
Câu hỏi của Phạm Võ Thanh Trúc - Toán lớp 6 - Học toán với OnlineMath
Vi n > 2 => n co 3 dang sau : 3k+1 , 3k , 3k+2
Nếu n có dạng 3k+1 thì thay n=3k+1 vào 2n+1 thì 2n+1 chia hết cho 2 ( loại )
Nếu n có dạng 3k+2 thì thay n=3k+2 vào 2n+1 thì 2n+1 chia hết cho 3 ( loại )
Nếu n có dạng 3k thì thay n=3k vào 2n+1 thì 2n+1 là SNT
Thay n=3k vào 2n-1 thì 2n-1 là SNT
( giải chi tiết ra nha bà chj)
sorry em ko biết