Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{a}{a'}+\frac{b'}{b}=1\)
\(\Rightarrow ab+a'b'=a'b\)
\(\Rightarrow abc+a'b'c=a'bc\left(1\right)\)
Lại có:\(\frac{b}{b'}+\frac{c'}{c}=1\)
\(\Rightarrow bc+b'c'=b'c\)
\(\Rightarrow a'bc+a'b'c'=a'b'c\left(2\right)\)
Cộng vế theo vế của (1) và (2) ta được:
\(abc+a'b'c'=0\)
Vì 2k2=2bc => k2=bc
=> b=c=k
Lại có: (k+k).(k-k)=(c+c).(c-c)
=> (k+b).(c-k)=(c+k).(c-b) ( Vì c=b=k nên ta thay vào nhé bạn)
=> \(\frac{k+b}{c-b}=\frac{c+k}{c-k}\)
Bài rất dễ nha bạn!
\(\frac{k}{x}\) = \(\frac{a}{c}\) => kc = ax (nhân chéo)
\(\frac{k}{y}\) = \(\frac{b}{d}\)=> kd = by (nhân chéo)
=> ax+by = kc+kd(cộng từng vế phương trình)
<=> ax+by = k(c+d) [đặt nhân tử chung]
<=> ax+by = k(k) = k2 (vì c+d =k)
!!!! chúc bạn học tốt-Thợ săn toán học
\(\frac{k}{x}=\frac{a}{c}\Rightarrow kc=ax;\frac{k}{y}=\frac{b}{d}\Rightarrow kd=by\)
ax+by=kc+kd=k(c+d)=k.k=k2
=>đpcm
Áp dụng t/c DTSBN có:
(b+c+d)/a=(c+d+a)/a=(d+a+b)/c=(a+b+c)/d=(b+c+d+c+d+a+d+a+b+a+b+c)/(a+b+c+d)
=[3.(a+b+c+d)]/(a+b+c) =3(1)
Lại có: (b+c+d)/a=(c+d+a)/a=(d+a+b)/c=(a+b+c)/d=k(2)
Từ (1) và (2) có: k=3
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{b+c+d}{a}=\frac{c+d+a}{b}=\frac{d+a+b}{c}=\frac{a+b+c}{d}\)
\(=\frac{b+c+d+c+d+a+d+a+b+a+b+c}{a+b+c+d}\)
\(=\frac{3a+3b+3c+3d}{a+b+c+d}\)
\(=\frac{3\left(a+b+c+d\right)}{a+b+c+d}\)
\(=3\)
Vậy k = 3
Sai đề
Cho : 2k2 = 2bc ( k ≠≠\neq b ; k ≠≠\neq c )
CMR : k+bc−b=c+kc−kk+bc−b=c+kc−k\frac{k+b}{c-b}=\frac{c+k}{c-k}