K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2016

Ta có : \(\frac{2a}{3}=\frac{b}{2}=\frac{c}{-4}=\frac{d}{5}\)

\(\Rightarrow\frac{a}{\frac{3}{2}}=\frac{b}{2}=\frac{c}{-4}=\frac{d}{5}=\frac{3a}{\frac{9}{2}}=\frac{2b}{4}=\frac{4c}{-16}=\frac{3a-2b+4c-d}{\frac{9}{2}-4+\left(-16\right)-5}=\frac{2}{-20,5}\)

\(\Rightarrow a=-\frac{6}{41};b=-\frac{8}{41};c=82;d=-102,5\)

Khi đó dễ dàng tính được a + b - 2c - 3d 

Theo đề, ta có: 6a=2b=-4c=5d

\(\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}=\dfrac{3a-2b+4c-d}{3\cdot10-2\cdot30+4\cdot\left(-15\right)-12}=\dfrac{2}{-102}=-\dfrac{1}{51}\)

Do đó: a=-10/51; b=-10/17; c=5/17; d=4/17

\(a+b-2c-3d=\dfrac{-10}{51}-\dfrac{10}{17}-2\cdot\dfrac{5}{17}-3\cdot\dfrac{4}{17}=-\dfrac{106}{51}\)

2 tháng 7 2016

bạn chỉ cần đăng câu hỏi 1 lần thôi nhá, yên tâm vì mình sẽ giúp bạn ok

2 tháng 7 2016

uk, giúp mk các câu hỏi mk gửi nhé chiều nay mk học rùi

Theo đề, ta có: 6a=2b=-4c=5d

\(\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}=\dfrac{3a-2b+4c-d}{3\cdot10-2\cdot30+4\cdot\left(-15\right)-12}=\dfrac{2}{-102}=-\dfrac{1}{51}\)

Do đó: a=-10/51; b=-10/17; c=5/17; d=4/17

\(a+b-2c-3d=\dfrac{-10}{51}-\dfrac{10}{17}-2\cdot\dfrac{5}{17}-3\cdot\dfrac{4}{17}=-\dfrac{106}{51}\)

Theo đề, ta có: 6a=2b=-4c=5d

\(\Leftrightarrow\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{10}=\dfrac{b}{30}=\dfrac{c}{-15}=\dfrac{d}{12}=\dfrac{3a-2b+4c-d}{3\cdot10-2\cdot30+4\cdot\left(-15\right)-12}=\dfrac{2}{-102}=-\dfrac{1}{51}\)

Do đó: a=-10/51; b=-10/17; c=5/17; d=4/17

\(a+b-2c-3d=\dfrac{-10}{51}-\dfrac{10}{17}-2\cdot\dfrac{5}{17}-3\cdot\dfrac{4}{17}=-\dfrac{106}{51}\)

15 tháng 6 2016

Ta có:

\(\frac{a}{2}=\frac{b}{3}=\frac{c}{-4}=>\frac{5a}{10}=\frac{2b}{6}=\frac{c}{-4}\)

Theo t/c dãy tỉ số=nhau:

\(\frac{5a}{10}=\frac{2b}{6}=\frac{c}{-4}=\frac{5a-2b+c}{10-6+\left(-4\right)}=\frac{1}{0}=error\)

Xem lại đề

15 tháng 6 2016

đề lỗi ròi

11 tháng 11 2023

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)

\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)

Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)

2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)

\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)

Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)

3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)

Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)

4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)

\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)

Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)

5 tháng 11 2018

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Khi đó, ta có : \(\frac{3bk+2b}{2bk+3b}=\frac{\left(3k+2\right)b}{\left(2k+3\right)b}=\frac{3k+2}{2k+3}\)(1)

       \(\frac{3dk+2d}{2dk+3d}=\frac{\left(3k+2\right).d}{\left(2k+3\right).d}=\frac{3k+2}{2k+3}\)(2)

Từ (1) và (2), suy ra :  \(\frac{3a+2b}{2a+3b}=\frac{3c+2d}{2c+3d}\)