Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a1 + (a2 +a3 + a4) +...+ (a11 + a12 +a13) + a14 + (a15 + a16 + a17) + (a18 + 19 +a20) <0; a1>0; a2 +a3 + a4 >0 ;...; a11 + a12 +a13 >0; a15 + a16 + a17 >0; a18 + 19 +a20 >0; a14 <0
Cũng như vậy: (a1 + a2 +a3) +...+(a10 +a11 +a12) + (a13 +a14) + (a15 +a16 +a17) + (a18 +a19 + a20) <0 =>(a13 +a14)<0
Mặt khác a12 + a13 +a14 >0 => a12>0
Từ điều kiện a1 >0; a12>0; a14<0 => a1.a14 + a14.a12 <a1.a12(đpcm)
sai đề : phải là: a1.a14+a14.a12<a1.a12 nếu thế thì giải như sau
Ta có : a1 + (a2 + a3 + a4) + … + (a11 + a12 + a13) + a14 + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 ; a1 > 0 ; a2 + a3 + a4 > 0 ; … ; a11 + a12 + a13 > 0 ; a15 + a16 + a17 > 0 ; a18 + a19 + a20 > 0 => a20 < 0.
Cũng như vậy : (a1 + a2 + a3) + … + (a10 + a11 + a12) + (a13 + a14) + (a15 + a16 + a17) + (a18 + a19 + a20) < 0 => a13 + a14 < 0.
Mặt khác, a12 + a13 + a14 > 0 => a12 > 0.
Từ các điều kiện a1 > 0 ; a12 > 0 ; a14 < 0 => a1.a14 + a14a12 < a1.a12 [dpcm]
Bổ đề: Do x+(-x) = 0 (mod 2) nên ta cũng có x = -x = |x| (mod 2).
Vậy S = (a1-a2)+(a2-a3)+...+(an-a1) (mod 2)
<=> S = 0 (mod 2) (đpcm).
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm