K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

\(a^2+a=b^2+b\)

\(\Leftrightarrow a^2+a-b^2-b=0\)

\(\Leftrightarrow\left(a^2-b^2\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

Vì a, b là số dương \(\Rightarrow a+b+1>0\)

\(\Rightarrow a-b=0\)\(\Leftrightarrow a=b\)( đpcm )

7 tháng 10 2020

Ta có: \(a^2+a=b^2+b\)

\(\Leftrightarrow a^2+a-b^2-b=0\)

\(\Leftrightarrow\left(a^2-b^2\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)+\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b+1\right)=0\)

Mà \(\hept{\begin{cases}a>0\\b>0\end{cases}}\Rightarrow a+b+1>0\)

\(\Rightarrow a-b=0\Rightarrow a=b\)

NV
10 tháng 9 2021

\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)

7 tháng 4 2020

Áp dụng BĐT Cosi

\(A=\frac{a^2}{a+1}+\frac{b^2}{b+1}\ge2\sqrt{\frac{a^2}{a+1}+\frac{b^2}{b+1}}\)

\(\Leftrightarrow A\ge\frac{2ab}{\sqrt{\left(a+1\right)\left(b+1\right)}}\)

Đến đây bạn tự xử lí phần dấu "="

10 tháng 4 2020

Nhật Quỳnh Cô si lỗi rồi kìa -_-

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}\)\(\ge\frac{\left(a+b\right)^2}{a+b+2}=\frac{4}{4}=1\)

Dấu "=" xảy ra tại a=b=1

Vậy..........................

18 tháng 4 2017

ta co:

      a-b=a^3+b^3

a-b-b^3=a^3

Mà một số luôn nhỏ hơn hoặc bằng chính nó lũy thừa 3

Nhưng a-b-b^3=a^3 nên b=0

Mà a=a^3 suy ra a=1

28 tháng 4

nếu nhưtrong trường hợp a<= 1 thì a >= a^3 chứ?

19 tháng 5 2022

vì (a-1)2 ≥ 0 nên a2 +1 ≥ 2a  ∀mọi x    (1)

vì (b-1)2 ≥ 0 nên b2 +1 ≥ 2b ∀ mọi x      (2)

từ 1 và 2 ⇒ a2+b≥ 2a+2b

               ⇒ A≥ 2(a+b)=2

dấu''=' xảy ra khi a=b=1/2

NV
2 tháng 6 2021

\(\dfrac{a}{b}-1=\dfrac{a^2+n^2}{b^2+n^2}-1\Rightarrow\dfrac{a-b}{b}=\dfrac{\left(a-b\right)\left(a+b\right)}{b^2+n^2}\)

TH1: \(a=b\) thì \(ab=a^2\) là SCP

TH2: \(a\ne b\Rightarrow\dfrac{1}{b}=\dfrac{a+b}{b^2+n^2}\)

\(\Rightarrow b^2+n^2=b\left(a+b\right)\Rightarrow ab=n^2\) là SCP

19 tháng 6 2021

\(3a+3b+\dfrac{1}{a+b}=\dfrac{a+b}{25}+\dfrac{1}{a+b}+\dfrac{74\left(a+b\right)}{25}\ge2.\sqrt{\dfrac{a+b}{25}.\dfrac{1}{a+b}}+\dfrac{74}{25}.5=\dfrac{76}{5}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{5}{2}\)

Vậy GTNN của biểu thức là \(\dfrac{76}{5}\)

19 tháng 6 2021

Ta có: 3a + 3b + \(\dfrac{1}{a+b}\) = \(\dfrac{1}{a+b}+\dfrac{a+b}{25}+\dfrac{74}{25}\left(a+b\right)\)

Áp dụng BDT Co-si, ta có:

\(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge2\sqrt{\dfrac{1}{a+b}.\dfrac{a+b}{25}}\)

=> \(\dfrac{1}{a+b}+\dfrac{a+b}{25}\ge\dfrac{2}{5}\)

Mà \(\dfrac{74}{25}\left(a+b\right)\ge\dfrac{74}{5}\)

=> \(3\left(a+b\right)+\dfrac{1}{a+b}\ge\dfrac{76}{5}\)

Dấu "=" xảy ra <=> \(a=b=\dfrac{5}{2}\)