Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=2x+1\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
\(\Leftrightarrow\)\(2x+1=0\)
\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
\(f\left(x_1\right)=ax_1\) ; \(f\left(x_2\right)=ax_2\) ; \(f\left(x_1x_2\right)=ax_1x_2\)
Để \(f\left(x_1\right)f\left(x_2\right)=f\left(x_1x_2\right)\)
\(\Leftrightarrow ax_1.ax_2=ax_1x_2\)
\(\Leftrightarrow a^2x_1x_2=ax_1x_2\)
\(\Leftrightarrow a^2=a\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\left(loại\right)\\a=1\end{matrix}\right.\)
Vậy \(a=1\)
Câu 1/
\(f\left(13\right)=x^{13}\left(x-14\right)+14x^{12}-...-14x+14\)
\(=-x^{13}+14x^{12}-14x^{11}+...-14x+14\)
\(=x^{12}\left(-x+14\right)-14x^{11}+...-14x+14\)
\(=x^{12}-14x^{11}+...-14x+14=...\)
\(=-x+14=1\)
(Bạn để ý quy luật sau các bước rút gọn lần lượt thì mũ chẵn sẽ biến thành hệ số 1, mũ lẻ thành hệ số -1 nên x sẽ có hệ số -1)
Câu 2:
+) \(f\left(-x\right)=f\left(x\right)\) có: \(f_3\left(x\right);f_4\left(x\right);f_6\left(x\right)\)
+) \(f\left(-x\right)=-f\left(x\right)\) có: \(f_1\left(x\right);f_2\left(x\right);f_5\left(x\right)\)
+) \(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\) có: \(f_1\left(x\right);f_2\left(x\right)\)
+) \(f\left(x_1x_2\right)=f\left(x_1\right).f\left(x_2\right)\) có: \(f_1\left(x\right);f_3\left(x\right);f_5\left(x\right);f_6\left(x\right)\)
a) \(f\left(0\right)=\left|0\right|=0\)
\(f\left(\dfrac{3}{2}\right)=\left|\dfrac{3}{2}\right|=\dfrac{3}{2}\)
\(f\left(7\right)=\left|7\right|=7\)
\(f\left(-1\right)=\left|-1\right|=1\)
\(f\left(-5\right)=\left|-5\right|=5\)
b) \(f\left(x\right)=2\Rightarrow\left|x\right|=2\Rightarrow x=\left\{-2;2\right\}\)
Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)
Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)
a) \(f\left(3\right)=4\times3^2-5=31\)
\(f\left(-\frac{1}{2}\right)=4\times\left(-\frac{1}{2}\right)^2-5=-4\)
b) để f(x)=-1
<=>\(4x^2-5=-1\)
<=>\(4x^2=4\)
<=>\(x^2=1\)
<=>\(x=\orbr{\begin{cases}1\\-1\end{cases}}\)
Cho hàm số y = f(x) = 4x^2 +4y=f(x)=4x2+4. Tính f(-2)f(−2) ; f(2)f(2) ; f(4)f(4).
Đáp số:
f(-2) =f(−2)=
f(2) =f(2)=
f(4) =f(4)=