Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng đi qua gốc tọa độ có dạng y = ax + b
Vì đường thẳng y = ax đi qua điểm A(2; 1) nên tọa độ điểm A nghiệm đúng phương trình đường thẳng.
Ta có: 1 = a.2 ⇔ a = 1/2
Vậy hệ số góc của đường thẳng đi qua gốc tọa độ và đi qua điểm A(2; 1) là a = 1/2
a. Giả sử phương trình đường thẳng đi qua gốc tọa độ và đi qua A(3;1) là y=ax \(\Rightarrow1=3a\Rightarrow a=\dfrac{1}{3}\) ⇒ \(y=\dfrac{1}{3}x\) ⇒ hệ số góc của đường thẳng đó là \(\dfrac{1}{3}\)
b. Giả sử phương trình đường thẳng đi qua gốc tọa độ và đi qua B(1;-3) là y=a'x \(\Rightarrow-3=a\Rightarrow a=-3\) ⇒y=-3x ⇒ hệ số góc của đường thẳng đó là -3
a) ta có a=\(\dfrac{yA-yB}{xA-xB}\) ⇒ hệ số góc đường thẳng qua gốc toạ độ và A(3,1) là a=\(\dfrac{1-0}{3-0}\)=\(\dfrac{1}{3}\)
b)tương tự a=\(\dfrac{-3-0}{1-0}=-3\)
a/ Đường thẳng qua gốc tọa độ có dạng \(y=kx\)
\(\Rightarrow k.1=-2\Rightarrow k=-2\)
b/ Gọi pt đường thẳng có dạng \(y=kx+b\)
\(\left\{{}\begin{matrix}k.1+b=-2\\k.\left(-4\right)+b=3\end{matrix}\right.\) \(\Rightarrow5k=-5\Rightarrow k=-1\)