Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^3-2ax+a^2\)
\(\Rightarrow f\left(1\right)=1-2a+a^2\)
\(g\left(x\right)=x^3+\left(3a+1\right)x+a^2\)
\(\Rightarrow g\left(3\right)=27+\left(3a+1\right)3+a^2\)
Mà \(f\left(1\right)=g\left(3\right)\)
\(\Rightarrow1-2a+a^2=27+\left(3a+1\right)3+a^2\)
\(\Rightarrow1-2a=27+9a+3\)
\(\Rightarrow1-2a=30+9a\)
\(\Rightarrow-29=11a\)
\(\Rightarrow a=\dfrac{-29}{11}\)
Vậy \(a=\dfrac{-29}{11}\) thì \(f\left(1\right)=g\left(3\right)\)
f(3)=g(1)
nên \(1+3\left(3a+1\right)+a^2=1-2a+a^2\)
\(\Leftrightarrow1+9a+3=1-2a\)
=>11a=-3
hay a=-3/11
Bài 1:
a) Ta có: \(P\left(x\right)=3x^4+2x^2-3x^4-2x^2+2x-5\)
\(=\left(3x^4-3x^4\right)+\left(2x^2-2x^2\right)+2x-5\)
\(=2x-5\)
Bài 1:
b)
\(P\left(-1\right)=2\cdot\left(-1\right)-5=-2-5=-7\)
\(P\left(3\right)=2\cdot3-5=6-5=1\)
a: M(1)=3
M(-2)=2
=>a+b=3 và -2a+b=2
=>a=1/3 và b=8/3
b: G(-1)=F(2)
=>(a+1)*(-1)^2-3=5*2+7a
=>a+1-3-10-7a=0
=>-6a-12=0
=>a=-2