Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{x+y+z+3}=\frac{3}{4}\)
Xét: \(x^4+y^4-xy\left(x^2+y^2\right)=\left(x^2+y^2+xy\right)\left(x-y\right)^2\ge0\)
\(\Rightarrow x^4+y^4\ge xy\left(x^2+y^2\right)\)(*)
Tương tự với (*) ta có: \(\hept{\begin{cases}y^4+z^4\ge yz\left(y^2+z^2\right)\\z^4+x^4\ge zx\left(z^2+x^2\right)\end{cases}}\)
\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2\right)+z.xyz}=\Sigma_{cyc}\frac{1}{xy\left(x^2+y^2+z^2\right)}=\frac{x+y+z}{x^2+y^2+z^2}\)
Ta có:\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) và \(x+y+z\ge3\sqrt[3]{xyz}=3\)
\(\Rightarrow\Sigma_{cyc}\frac{1}{x^4+y^4+z}\le\frac{x+y+z}{x^2+y^2+z^2}\le\frac{1}{\frac{1}{3}\left(x+y+z\right)}\le1\)
Dấu "=" xảy ra khi x=y=z=1
\(x^3+y^3+1\ge xy\left(x+y\right)+xyz=xy\left(x+y+z\right)\)
=> \(\frac{1}{x^3+y^3+1}\le\frac{1}{xy\left(x+y+z\right)}\)
Hai cái còn lại tương tự
=> A \(\le\frac{1}{xy\left(x+y+z\right)}+\frac{1}{yz\left(x+y+z\right)}+\frac{1}{xz\left(x+y+z\right)}=\frac{1}{x+y+z}\cdot\frac{x+y+z}{xyz}=1\)
Vậy MAx A = 1 tại x = y = z = 1
Đặt a = x + 1 > 0 ; b = y + 1 > 0 ; c = z + 4 > 0
a + b + c = 6
\(A=\frac{a-1}{a}+\frac{b-1}{b}+\frac{c-4}{c}=3-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\)
Theo Bất Đẳng Thức ta có: \(\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{4}{c}\ge\frac{4}{a+b}+\frac{4}{c}\ge\frac{16}{a+b+c}=\frac{8}{3}\)
\(\Rightarrow A\le\frac{1}{3}\)Đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}a=b\\a+b=c\\a+b+c=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{3}{2}\\c=3\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}}\)
Vậy MaxA = 1/3 khi \(\hept{\begin{cases}x=y=\frac{1}{2}\\z=-1\end{cases}}\)
Ta có: \(x+y+z=1\Rightarrow\hept{\begin{cases}\sqrt{x+yz}=\sqrt{x\left(x+y+z\right)+yz}=\sqrt{\left(x+y\right)\left(x+z\right)}\\\sqrt{y+xz}=\sqrt{y\left(x+y+z\right)+xz}=\sqrt{\left(x+y\right)\left(y+z\right)}\\\sqrt{z+xy}=\sqrt{z\left(x+y+z\right)+xy}=\sqrt{\left(x+z\right)\left(y+z\right)}\end{cases}}\)
Ta viết lại A
\(A=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(y+z\right)\left(x+z\right)}\)
Áp dụng bđt AM-GM:
\(A\le\frac{x+y+x+z+x+y+y+z+y+z+x+z}{2}=2\)
\("="\Leftrightarrow x=y=z=\frac{1}{3}\)
\(x+yz=x\left(x+y+z\right)+yz\)
\(=x^2+xy+xz+yz\)
\(=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)
+ Tương tự : \(y+xz=\left(x+y\right)\left(y+z\right)\)
\(z+xy=\left(x+z\right)\left(y+z\right)\)
+ Theo bđt AM-GM : \(\sqrt{\left(x+y\right)\left(x+z\right)}\le\frac{x+y+x+z}{2}\)
\(\Rightarrow\sqrt{\left(x-1\right)\left(y-1\right)}\le\frac{2x+y+z}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=x+z\Leftrightarrow y=z\)
+ Tương tự ta cm đc :
\(\sqrt{\left(x+y\right)\left(y+z\right)}\le\frac{x+2y+z}{2}\). Dấu "=" xảy ra \(\Leftrightarrow x=z\)
\(\sqrt{\left(x+z\right)\left(y+z\right)}\le\frac{x+y+2z}{2}\). Dấu "=" xảy ra \(\Leftrightarrow x=y\)
Do đó : \(A\le\frac{4\left(x+y+z\right)}{2}=2\)
A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)
Vậy Max A = 2 \(\Leftrightarrow x=y=z=\frac{1}{3}\)
https://olm.vn/hoi-dap/detail/88068471767.html
Có : \(P=\Sigma\frac{x}{x+1}\)
\(\Rightarrow3-P=\Sigma\left(1-\frac{x}{x+1}\right)\)
\(=\Sigma\frac{1}{x+1}\)
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)được
\(3-P=\Sigma\frac{1}{x+1}\ge\frac{9}{x+y+z+3}=\frac{9}{4}\)
\(\Rightarrow P\le3-\frac{9}{4}=\frac{3}{4}\)
Dấu "=" khi x = y = z = 1/3
\(P=\left|x\right|+\left|y\right|+\left|z\right|\)
Không mất tính tổng quát giả sử \(x\le y\le z\).
Khi đó \(x\le0;z\ge0\).
+) Nếu \(y\geq 0\) thì \(P=z-x+y=z-x-x-z=-2x\le2\).
+) Nếu \(y< 0\) thì \(P=z-x-y=z-x+z+x=2z\le2\).
Tóm lại \(P\le2\). Đẳng thức xảy ra khi, chẳng hạn x = -1; y = 0; z = 1.
Vậy Max P = 2 khi x = -1; y = 0; z = 1.